Generalized linear differential equation using Hyers-Ulam stability approach
In this paper, we study the Hyers-Ulam stability with respect to the linear differential condition of fourth order. Specifically, we treat ${\psi}$ as an interact arrangement of the differential condition, i.e., where ${\psi} \in c^4 [{\ell}, {\mu}], {\Psi} \in [{\ell}, {\mu}]$. We demonstrate that...
Uložené v:
| Vydané v: | AIMS mathematics Ročník 6; číslo 2; s. 1607 - 1623 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
AIMS Press
01.01.2021
|
| Predmet: | |
| ISSN: | 2473-6988, 2473-6988 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper, we study the Hyers-Ulam stability with respect to the linear differential condition of fourth order. Specifically, we treat ${\psi}$ as an interact arrangement of the differential condition, i.e., where ${\psi} \in c^4 [{\ell}, {\mu}], {\Psi} \in [{\ell}, {\mu}]$. We demonstrate that ${\psi}^{iv} ({\varkappa}) + {\xi}_1 {\psi}{'''} ({\varkappa})+ {\xi}_2 {\psi}{''} ({\varkappa}) + {\xi}_3 {\psi}' ({\varkappa}) + {\xi}_4 {\psi}({\varkappa}) = {\Psi}({\varkappa})$ has the Hyers-Ulam stability. Two examples are provided to illustrate the usefulness of the proposed method. |
|---|---|
| ISSN: | 2473-6988 2473-6988 |
| DOI: | 10.3934/math.2021096 |