Generalized linear differential equation using Hyers-Ulam stability approach

In this paper, we study the Hyers-Ulam stability with respect to the linear differential condition of fourth order. Specifically, we treat ${\psi}$ as an interact arrangement of the differential condition, i.e., where ${\psi} \in c^4 [{\ell}, {\mu}], {\Psi} \in [{\ell}, {\mu}]$. We demonstrate that...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:AIMS mathematics Ročník 6; číslo 2; s. 1607 - 1623
Hlavní autoři: Unyong, Bundit, Govindan, Vediyappan, Bowmiya, S., Rajchakit, G., Gunasekaran, Nallappan, Vadivel, R., Peng Lim, Chee, Agarwal, Praveen
Médium: Journal Article
Jazyk:angličtina
Vydáno: AIMS Press 01.01.2021
Témata:
ISSN:2473-6988, 2473-6988
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we study the Hyers-Ulam stability with respect to the linear differential condition of fourth order. Specifically, we treat ${\psi}$ as an interact arrangement of the differential condition, i.e., where ${\psi} \in c^4 [{\ell}, {\mu}], {\Psi} \in [{\ell}, {\mu}]$. We demonstrate that ${\psi}^{iv} ({\varkappa}) + {\xi}_1 {\psi}{'''} ({\varkappa})+ {\xi}_2 {\psi}{''} ({\varkappa}) + {\xi}_3 {\psi}' ({\varkappa}) + {\xi}_4 {\psi}({\varkappa}) = {\Psi}({\varkappa})$ has the Hyers-Ulam stability. Two examples are provided to illustrate the usefulness of the proposed method.
ISSN:2473-6988
2473-6988
DOI:10.3934/math.2021096