Growth and stabilization of silver nanoparticles on carbon dots and sensing application
Carbon dots (C-dots) have been proven to show the capability for direct reduction of Ag(+) to elemental silver (Ag(0)) without additional reducing agent or external photoirradiation by incubating Ag(+) with C-dots for 5 min in a water bath at 50 °C. Silver nanoparticles (Ag-NPs) are simultaneously f...
Saved in:
| Published in: | Langmuir Vol. 29; no. 52; p. 16135 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
31.12.2013
|
| Subjects: | |
| ISSN: | 1520-5827, 1520-5827 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Carbon dots (C-dots) have been proven to show the capability for direct reduction of Ag(+) to elemental silver (Ag(0)) without additional reducing agent or external photoirradiation by incubating Ag(+) with C-dots for 5 min in a water bath at 50 °C. Silver nanoparticles (Ag-NPs) are simultaneously formed with an average size of 3.1 ± 1.5 nm and grew on carbon dots. This process involves the oxidation of amine or phenol hydroxyl groups on the aromatic ring of C-dots. Meanwhile C-dots protect and stabilize the Ag-NPs from aggregation in aqueous medium; that is, the Ag-NPs are stable at least for 45 days in aqueous medium. The formed Ag-NPs cause significant resonance light scattering (RLS), which correlates closely with the concentration of silver cation, and this facilitates quantitative detection of silver in aqueous medium. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1520-5827 1520-5827 |
| DOI: | 10.1021/la404270w |