Weight Multiplicities and Young Tableaux Through Affine Crystals

The weight multiplicities of finite dimensional simple Lie algebras can be computed individually using various methods. Still, it is hard to derive explicit closed formulas. Similarly, explicit closed formulas for the multiplicities of maximal weights of affine Kac–Moody algebras are not known in mo...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autoři: Kim, Jang Soo, Lee, Kyu-Hwan, Oh, Se-jin
Médium: E-kniha Kniha
Jazyk:angličtina
Vydáno: Providence, Rhode Island American Mathematical Society 2023
Vydání:1
Edice:Memoirs of the American Mathematical Society
Témata:
ISBN:1470459949, 9781470459949
ISSN:0065-9266, 1947-6221
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Obsah:
  • Introduction -- Affine Kac–Moody algebras -- Crystals and Young walls -- Young tableaux and almost even tableaux -- Lattice paths and triangular arrays -- Dominant maximal weights -- Weight multiplicities and (spin) rigid Young tableaux -- Level <inline-formula content-type="math/mathml"> 2 2 </inline-formula> weight multiplicities: Catalan and Pascal triangles -- Level <inline-formula content-type="math/mathml"> 3 3 </inline-formula> weight multiplicities: Motzkin and Riordan triangles -- Some level <inline-formula content-type="math/mathml"> k k </inline-formula> weight multiplicities when <inline-formula content-type="math/mathml"> k → ∞ k\to \infty </inline-formula>: Bessel triangle -- Standard Young tableaux with a fixed number of rows of odd length