Weight Multiplicities and Young Tableaux Through Affine Crystals
The weight multiplicities of finite dimensional simple Lie algebras can be computed individually using various methods. Still, it is hard to derive explicit closed formulas. Similarly, explicit closed formulas for the multiplicities of maximal weights of affine Kac–Moody algebras are not known in mo...
Uloženo v:
| Hlavní autoři: | , , |
|---|---|
| Médium: | E-kniha Kniha |
| Jazyk: | angličtina |
| Vydáno: |
Providence, Rhode Island
American Mathematical Society
2023
|
| Vydání: | 1 |
| Edice: | Memoirs of the American Mathematical Society |
| Témata: | |
| ISBN: | 1470459949, 9781470459949 |
| ISSN: | 0065-9266, 1947-6221 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The weight multiplicities of finite dimensional simple Lie algebras can be computed individually using various methods. Still, it is
hard to derive explicit closed formulas. Similarly, explicit closed formulas for the multiplicities of maximal weights of affine
Kac–Moody algebras are not known in most cases. In this paper, we study weight multiplicities for both finite and affine cases of
classical types for certain infinite families of highest weights modules. We introduce new classes of Young tableaux, called the |
|---|---|
| Bibliografie: | March 2023, volume 283, number 1401 (fourth of 7 numbers) Other authors: Kyu-Hwan Lee, Se-jin Oh Includes bibliographical references (p. 87-88) |
| ISBN: | 1470459949 9781470459949 |
| ISSN: | 0065-9266 1947-6221 |
| DOI: | 10.1090/memo/1401 |

