Rank-based Multi-objective Approximate Logic Synthesis via Monte Carlo Tree Search

Approximate Logic Synthesis (ALS) is an automated technique designed for error-tolerant applications, optimizing delay, area, and power under specified error constraints. However, existing methods typically focus on either delay reduction or area minimization, often leading to local optima in multi-...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2025 62nd ACM/IEEE Design Automation Conference (DAC) s. 1 - 7
Hlavní autori: Ye, Yuyang, Hu, Xiangfei, Liu, Yuchen, Xu, Peng, Gong, Yu, Chen, Tinghuan, Yan, Hao, Yu, Bei, Shi, Longxing
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 22.06.2025
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Approximate Logic Synthesis (ALS) is an automated technique designed for error-tolerant applications, optimizing delay, area, and power under specified error constraints. However, existing methods typically focus on either delay reduction or area minimization, often leading to local optima in multi-objective optimization. This paper proposes a rankbased multi-objective ALS framework using Monte Carlo Tree Search (MCTS). It develops non-dominated circuit ranking, to guide MCTS in exploring local approximate changes (LACs) across the entire circuit and generate approximate circuit sets with great optimization potential. Additionally, a Rank-Transformer model is introduced to predict pathdomain ranks, enhancing the application of high-quality LACs within circuit paths. Experimental results show that our framework achieves faster and more efficient optimization in delay and area simultaneously compared to state-of-the-art methods.
DOI:10.1109/DAC63849.2025.11132589