Rank-based Multi-objective Approximate Logic Synthesis via Monte Carlo Tree Search
Approximate Logic Synthesis (ALS) is an automated technique designed for error-tolerant applications, optimizing delay, area, and power under specified error constraints. However, existing methods typically focus on either delay reduction or area minimization, often leading to local optima in multi-...
Uloženo v:
| Vydáno v: | 2025 62nd ACM/IEEE Design Automation Conference (DAC) s. 1 - 7 |
|---|---|
| Hlavní autoři: | , , , , , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
22.06.2025
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Approximate Logic Synthesis (ALS) is an automated technique designed for error-tolerant applications, optimizing delay, area, and power under specified error constraints. However, existing methods typically focus on either delay reduction or area minimization, often leading to local optima in multi-objective optimization. This paper proposes a rankbased multi-objective ALS framework using Monte Carlo Tree Search (MCTS). It develops non-dominated circuit ranking, to guide MCTS in exploring local approximate changes (LACs) across the entire circuit and generate approximate circuit sets with great optimization potential. Additionally, a Rank-Transformer model is introduced to predict pathdomain ranks, enhancing the application of high-quality LACs within circuit paths. Experimental results show that our framework achieves faster and more efficient optimization in delay and area simultaneously compared to state-of-the-art methods. |
|---|---|
| DOI: | 10.1109/DAC63849.2025.11132589 |