A Limited-Memory Quasi-Newton Algorithm for Bound-Constrained Nonsmooth Optimization
We consider the problem of minimizing a continuous function that may be nonsmooth and nonconvex, subject to bound constraints. We propose an algorithm that uses the L-BFGS quasi-Newton approximation of the problem's curvature together with a variant of the weak Wolfe line search. The key ingred...
Gespeichert in:
| Veröffentlicht in: | arXiv.org |
|---|---|
| Hauptverfasser: | , |
| Format: | Paper |
| Sprache: | Englisch |
| Veröffentlicht: |
Ithaca
Cornell University Library, arXiv.org
21.12.2016
|
| Schlagworte: | |
| ISSN: | 2331-8422 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We consider the problem of minimizing a continuous function that may be nonsmooth and nonconvex, subject to bound constraints. We propose an algorithm that uses the L-BFGS quasi-Newton approximation of the problem's curvature together with a variant of the weak Wolfe line search. The key ingredient of the method is an active-set selection strategy that defines the subspace in which search directions are computed. To overcome the inherent shortsightedness of the gradient for a nonsmooth function, we propose two strategies. The first relies on an approximation of the \(\epsilon\)-minimum norm subgradient, and the second uses an iterative corrective loop that augments the active set based on the resulting search directions. We describe a Python implementation of the proposed algorithm and present numerical results on a set of standard test problems to illustrate the efficacy of our approach. |
|---|---|
| Bibliographie: | content type line 50 SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 |
| ISSN: | 2331-8422 |