Incomplete Sparse Approximate Inverses for Parallel Preconditioning
In this study, we propose a new preconditioning method that can be seen as a generalization of block-Jacobi methods, or as a simplification of the sparse approximate inverse (SAI) preconditioners. The “Incomplete Sparse Approximate Inverses” (ISAI) is in particular efficient in the solution of spars...
Uložené v:
| Vydané v: | Parallel computing Ročník 71 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Elsevier
28.10.2017
|
| Predmet: | |
| ISSN: | 0167-8191, 1872-7336 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this study, we propose a new preconditioning method that can be seen as a generalization of block-Jacobi methods, or as a simplification of the sparse approximate inverse (SAI) preconditioners. The “Incomplete Sparse Approximate Inverses” (ISAI) is in particular efficient in the solution of sparse triangular linear systems of equations. Those arise, for example, in the context of incomplete factorization preconditioning. ISAI preconditioners can be generated via an algorithm providing fine-grained parallelism, which makes them attractive for hardware with a high concurrency level. Finally, in a study covering a large number of matrices, we identify the ISAI preconditioner as an attractive alternative to exact triangular solves in the context of incomplete factorization preconditioning. |
|---|---|
| Bibliografia: | USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR) SC0016513 USDOE National Nuclear Security Administration (NNSA) |
| ISSN: | 0167-8191 1872-7336 |