Two Roads to Parallelism: From Serial Code to Programming with STAPL

Parallel computers have come of age and need parallel software to justify their usefulness. There are two major avenues to get programs to run in parallel: parallelizing compilers and parallel languages and/or libraries. In this talk we present our latest results using both approaches and draw some...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings - IEEE International Parallel and Distributed Processing Symposium s. 385
Hlavní autor: Rauchwerger, Lawrence
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.05.2019
Témata:
ISSN:1530-2075
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Parallel computers have come of age and need parallel software to justify their usefulness. There are two major avenues to get programs to run in parallel: parallelizing compilers and parallel languages and/or libraries. In this talk we present our latest results using both approaches and draw some conclusions about their relative effectiveness and potential. In the first part we introduce the Hybrid Analysis (HA) compiler framework that can seamlessly integrate static and run-time analysis of memory references into a single framework capable of full automatic loop level parallelization. Experimental results on 26 benchmarks show full program speedups superior to those obtained by the Intel Fortran compilers. In the second part of this talk we present the Standard Template Adaptive Parallel Library (STAPL) based approach to parallelizing code. STAPL is a collection of generic data structures and algorithms that provides a high productivity, parallel programming infrastructure analogous to the C++ Standard Template Library (STL). In this talk, we provide an overview of the major STAPL components with particular emphasis on graph algorithms. We then present scalability results of real codes using peta scale machines such as IBM BG/Q and Cray. Finally we present some of our ideas for future work in this area.
ISSN:1530-2075
DOI:10.1109/IPDPS.2019.00048