Detecting AI-Generated Source Code in Student Assignments Using Steganographic Watermarks
This paper presents the use of steganography to ensure the integrity and uniqueness of student programming assignments by embedding hidden student identifiers directly into assignment files. The system helps detect plagiarism and the use of AI models without altering visible content or functionality...
Uloženo v:
| Vydáno v: | 2025 International Conference on Emerging eLearning Technologies and Applications (ICETA) s. 229 - 235 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
13.11.2025
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper presents the use of steganography to ensure the integrity and uniqueness of student programming assignments by embedding hidden student identifiers directly into assignment files. The system helps detect plagiarism and the use of AI models without altering visible content or functionality. A prototype tool was developed to generate and analyze assignments using multiple steganographic techniques, and the functionality of the proposed methods was evaluated through testing. |
|---|---|
| DOI: | 10.1109/ICETA67772.2025.11280274 |