T2I-RISE: Text-to-Insights with Reinforcement learning, Integration of Semantic layers and Enrichment - A Comprehensive Approach with Conversational Context and Feedback Systems

This study introduces T2I-RISE, an innovative approach aimed at enabling natural language querying of databases, which could transform data-driven decision making. Currently, database insights are mostly generated by a limited group of experts. Business Intelligence tools provide some insights, but...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE International Conference on Big Data s. 1993 - 1998
Hlavní autoři: Katikeri, Raghu, Phaniraja, Sai, Pratheek, Sai, Desai, Rajvi, Vaid, Amit, Shukla, Neelesh, Jain, Sandeep
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 15.12.2024
Témata:
ISSN:2573-2978
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This study introduces T2I-RISE, an innovative approach aimed at enabling natural language querying of databases, which could transform data-driven decision making. Currently, database insights are mostly generated by a limited group of experts. Business Intelligence tools provide some insights, but these are often static. We propose a comprehensive solution tailored for enterprise applications to bridge the gap between user needs and existing capabilities. Despite the industry's increasing use of Text2SQL powered by Large Language Models (LLM), implementation challenges remain, particularly in managing large-scale database schema representations. Our study explores the critical elements needed for user intent comprehension and the generation of corresponding SQL and insights. T2I-RISE offers a comprehensive framework and thorough analysis of these components, including our unique optimization strategies.
ISSN:2573-2978
DOI:10.1109/BigData62323.2024.10825844