Universal objects of the infinite beta random matrix theory
We develop a theory of multilevel distributions of eigenvalues which complements the Dyson's threefold $\beta=1,2,4$ approach corresponding to real/complex/quaternion matrices by $\beta=\infty$ point. Our central objects are G$\infty$E ensemble, which is a counterpart of classical Gaussian Orth...
Uložené v:
| Vydané v: | Journal of the European Mathematical Society : JEMS |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
European Mathematical Society
2022
|
| Predmet: | |
| ISSN: | 1435-9855, 1435-9863 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We develop a theory of multilevel distributions of eigenvalues which complements the Dyson's threefold $\beta=1,2,4$ approach corresponding to real/complex/quaternion matrices by $\beta=\infty$ point. Our central objects are G$\infty$E ensemble, which is a counterpart of classical Gaussian Orthogonal/Unitary/Symplectic ensembles, and Airy$_{\infty}$ line ensemble, which is a collection of continuous curves serving as a scaling limit for largest eigenvalues at $\beta=\infty$. We develop two points of views on these objects. Probabilistic one treats them as partition functions of certain additive polymers collecting white noise. Integrable point of view expresses their distributions through the so-called associated Hermite polynomials and integrals of Airy function. We also outline universal appearances of our ensembles as scaling limits. |
|---|---|
| ISSN: | 1435-9855 1435-9863 |