Improved Weighted Restriction Estimates in R3

Suppose 0 < α ≤ n , H : R n → [ 0 , 1 ] is a Lebesgue measurable function, and A α ( H ) is the infimum of all numbers C for which the inequality ∫ B H ( x ) d x ≤ C R α holds for all balls B ⊂ R n of radius R ≥ 1 . After Guth introduced polynomial partitioning to Fourier restriction theory, weig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of geometric analysis Jg. 33; H. 9
1. Verfasser: Shayya, Bassam
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.09.2023
Schlagworte:
ISSN:1050-6926, 1559-002X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Suppose 0 < α ≤ n , H : R n → [ 0 , 1 ] is a Lebesgue measurable function, and A α ( H ) is the infimum of all numbers C for which the inequality ∫ B H ( x ) d x ≤ C R α holds for all balls B ⊂ R n of radius R ≥ 1 . After Guth introduced polynomial partitioning to Fourier restriction theory, weighted restriction estimates of the form ‖ E f ‖ L p ( B , H d x ) ≲ R ϵ A α ( H ) 1 / p ‖ f ‖ L q ( σ ) have been studied and proved in several papers, leading to new results about the decay properties of spherical means of Fourier transforms of measures and, in some cases, to progress on Falconer’s distance set conjecture in geometric measure theory. This paper improves on the known estimates when E is the extension operator associated with the unit paraboloid P ⊂ R 3 , reaching the full possible range of p ,  q exponents (up to the sharp line) for p ≥ 3 + ( α - 2 ) / ( α + 1 ) and 2 < α ≤ 3 .
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-023-01364-0