Improved Weighted Restriction Estimates in R3
Suppose 0 < α ≤ n , H : R n → [ 0 , 1 ] is a Lebesgue measurable function, and A α ( H ) is the infimum of all numbers C for which the inequality ∫ B H ( x ) d x ≤ C R α holds for all balls B ⊂ R n of radius R ≥ 1 . After Guth introduced polynomial partitioning to Fourier restriction theory, weig...
Uloženo v:
| Vydáno v: | The Journal of geometric analysis Ročník 33; číslo 9 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.09.2023
|
| Témata: | |
| ISSN: | 1050-6926, 1559-002X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Suppose
0
<
α
≤
n
,
H
:
R
n
→
[
0
,
1
]
is a Lebesgue measurable function, and
A
α
(
H
)
is the infimum of all numbers
C
for which the inequality
∫
B
H
(
x
)
d
x
≤
C
R
α
holds for all balls
B
⊂
R
n
of radius
R
≥
1
. After Guth introduced polynomial partitioning to Fourier restriction theory, weighted restriction estimates of the form
‖
E
f
‖
L
p
(
B
,
H
d
x
)
≲
R
ϵ
A
α
(
H
)
1
/
p
‖
f
‖
L
q
(
σ
)
have been studied and proved in several papers, leading to new results about the decay properties of spherical means of Fourier transforms of measures and, in some cases, to progress on Falconer’s distance set conjecture in geometric measure theory. This paper improves on the known estimates when
E
is the extension operator associated with the unit paraboloid
P
⊂
R
3
, reaching the full possible range of
p
,
q
exponents (up to the sharp line) for
p
≥
3
+
(
α
-
2
)
/
(
α
+
1
)
and
2
<
α
≤
3
. |
|---|---|
| ISSN: | 1050-6926 1559-002X |
| DOI: | 10.1007/s12220-023-01364-0 |