Multiple solutions for nonhomogeneous Schrödinger–Kirchhoff type equations involving the fractional p-Laplacian in RN
In this paper we investigate the existence of multiple solutions for the nonhomogeneous fractional p -Laplacian equations of Schrödinger–Kirchhoff type M ∫ ∫ R 2 N | u ( x ) - u ( y ) | p | x - y | N + p s d x d y ( - Δ ) p s u + V ( x ) | u | p - 2 u = f ( x , u ) + g ( x ) in R N , where ( - Δ ) p...
Uloženo v:
| Vydáno v: | Calculus of variations and partial differential equations Ročník 54; číslo 3; s. 2785 - 2806 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2015
|
| Témata: | |
| ISSN: | 0944-2669, 1432-0835 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper we investigate the existence of multiple solutions for the nonhomogeneous fractional
p
-Laplacian equations of Schrödinger–Kirchhoff type
M
∫
∫
R
2
N
|
u
(
x
)
-
u
(
y
)
|
p
|
x
-
y
|
N
+
p
s
d
x
d
y
(
-
Δ
)
p
s
u
+
V
(
x
)
|
u
|
p
-
2
u
=
f
(
x
,
u
)
+
g
(
x
)
in
R
N
, where
(
-
Δ
)
p
s
is the fractional
p
-Laplacian operator, with
0
<
s
<
1
<
p
<
∞
and
p
s
<
N
, the nonlinearity
f
:
R
N
×
R
→
R
is a Carathéodory function and satisfies the Ambrosetti–Rabinowitz condition,
V
:
R
N
→
R
+
is a potential function and
g
:
R
N
→
R
is a perturbation term. We first establish Batsch–Wang type compact embedding theorem for the fractional Sobolev spaces. Then multiplicity results are obtained by using the Ekeland variational principle and the Mountain Pass theorem. |
|---|---|
| ISSN: | 0944-2669 1432-0835 |
| DOI: | 10.1007/s00526-015-0883-5 |