Multiple solutions for nonhomogeneous Schrödinger–Kirchhoff type equations involving the fractional p-Laplacian in RN

In this paper we investigate the existence of multiple solutions for the nonhomogeneous fractional p -Laplacian equations of Schrödinger–Kirchhoff type M ∫ ∫ R 2 N | u ( x ) - u ( y ) | p | x - y | N + p s d x d y ( - Δ ) p s u + V ( x ) | u | p - 2 u = f ( x , u ) + g ( x ) in R N , where ( - Δ ) p...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Calculus of variations and partial differential equations Ročník 54; číslo 3; s. 2785 - 2806
Hlavní autoři: Pucci, Patrizia, Xiang, Mingqi, Zhang, Binlin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2015
Témata:
ISSN:0944-2669, 1432-0835
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper we investigate the existence of multiple solutions for the nonhomogeneous fractional p -Laplacian equations of Schrödinger–Kirchhoff type M ∫ ∫ R 2 N | u ( x ) - u ( y ) | p | x - y | N + p s d x d y ( - Δ ) p s u + V ( x ) | u | p - 2 u = f ( x , u ) + g ( x ) in R N , where ( - Δ ) p s is the fractional p -Laplacian operator, with 0 < s < 1 < p < ∞ and p s < N , the nonlinearity f : R N × R → R is a Carathéodory function and satisfies the Ambrosetti–Rabinowitz condition, V : R N → R + is a potential function and g : R N → R is a perturbation term. We first establish Batsch–Wang type compact embedding theorem for the fractional Sobolev spaces. Then multiplicity results are obtained by using the Ekeland variational principle and the Mountain Pass theorem.
ISSN:0944-2669
1432-0835
DOI:10.1007/s00526-015-0883-5