Practical approximation algorithms for ℓ1-regularized sparse rank-1 approximation to higher-order tensors
Two approximation algorithms are proposed for ℓ 1 -regularized sparse rank-1 approximation to higher-order tensors. The algorithms are based on multilinear relaxation and sparsification, which are easily implemented and well scalable. In particular, the second one scales linearly with the size of th...
Gespeichert in:
| Veröffentlicht in: | Optimization letters Jg. 18; H. 3; S. 767 - 781 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2024
|
| Schlagworte: | |
| ISSN: | 1862-4472, 1862-4480 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Two approximation algorithms are proposed for
ℓ
1
-regularized sparse rank-1 approximation to higher-order tensors. The algorithms are based on multilinear relaxation and sparsification, which are easily implemented and well scalable. In particular, the second one scales linearly with the size of the input tensor. Based on a careful estimation of the
ℓ
1
-regularized sparsification, theoretical approximation lower bounds are derived. Our theoretical results also suggest an explicit way of choosing the regularization parameters. Numerical examples are provided to verify the proposed algorithms. |
|---|---|
| ISSN: | 1862-4472 1862-4480 |
| DOI: | 10.1007/s11590-023-02032-6 |