Practical approximation algorithms for ℓ1-regularized sparse rank-1 approximation to higher-order tensors

Two approximation algorithms are proposed for ℓ 1 -regularized sparse rank-1 approximation to higher-order tensors. The algorithms are based on multilinear relaxation and sparsification, which are easily implemented and well scalable. In particular, the second one scales linearly with the size of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimization letters Jg. 18; H. 3; S. 767 - 781
Hauptverfasser: Mao, Xianpeng, Yang, Yuning
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2024
Schlagworte:
ISSN:1862-4472, 1862-4480
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two approximation algorithms are proposed for ℓ 1 -regularized sparse rank-1 approximation to higher-order tensors. The algorithms are based on multilinear relaxation and sparsification, which are easily implemented and well scalable. In particular, the second one scales linearly with the size of the input tensor. Based on a careful estimation of the ℓ 1 -regularized sparsification, theoretical approximation lower bounds are derived. Our theoretical results also suggest an explicit way of choosing the regularization parameters. Numerical examples are provided to verify the proposed algorithms.
ISSN:1862-4472
1862-4480
DOI:10.1007/s11590-023-02032-6