基于混沌映射的改进金枪鱼群优化算法对比研究

TP301.6; Kubernetes作为当前云资源管理的标准平台,因其默认调度机制的局限性,目前普遍采用基于群智能优化算法的改进方法进行Pod的调度.而针对群智能优化算法存在的寻优性能易受初值影响、迭代后期容易早熟收敛等问题,选择金枪鱼群优化(Tuna Swarm Optimization,TSO)作为基础算法,根据混沌映射具有的遍历性、随机性等特点,提出了基于混沌映射的种群初始化优化方案.选择目前研究中普遍涉及的Tent、Logistic等多种混沌映射,分别对金枪鱼种群进行初始化,以提高初始种群的多样性.通过一系列基准测试函数进行仿真实验,对比基于不同混沌映射的改进金枪鱼群优化算法的实验结...

Full description

Saved in:
Bibliographic Details
Published in:计算机科学 Vol. 51; no. z1; pp. 261 - 270
Main Authors: 尹萍, 谈果戈, 宋伟, 谢涛涛, 姜建彪, 宋洪圆
Format: Journal Article
Language:Chinese
Published: 浪潮云信息技术股份公司 济南 250101 16.06.2024
Subjects:
ISSN:1002-137X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract TP301.6; Kubernetes作为当前云资源管理的标准平台,因其默认调度机制的局限性,目前普遍采用基于群智能优化算法的改进方法进行Pod的调度.而针对群智能优化算法存在的寻优性能易受初值影响、迭代后期容易早熟收敛等问题,选择金枪鱼群优化(Tuna Swarm Optimization,TSO)作为基础算法,根据混沌映射具有的遍历性、随机性等特点,提出了基于混沌映射的种群初始化优化方案.选择目前研究中普遍涉及的Tent、Logistic等多种混沌映射,分别对金枪鱼种群进行初始化,以提高初始种群的多样性.通过一系列基准测试函数进行仿真实验,对比基于不同混沌映射的改进金枪鱼群优化算法的实验结果,证明了基于混沌映射的优化方案可以有效提高原始TSO算法的收敛速度和寻优精度.
AbstractList TP301.6; Kubernetes作为当前云资源管理的标准平台,因其默认调度机制的局限性,目前普遍采用基于群智能优化算法的改进方法进行Pod的调度.而针对群智能优化算法存在的寻优性能易受初值影响、迭代后期容易早熟收敛等问题,选择金枪鱼群优化(Tuna Swarm Optimization,TSO)作为基础算法,根据混沌映射具有的遍历性、随机性等特点,提出了基于混沌映射的种群初始化优化方案.选择目前研究中普遍涉及的Tent、Logistic等多种混沌映射,分别对金枪鱼种群进行初始化,以提高初始种群的多样性.通过一系列基准测试函数进行仿真实验,对比基于不同混沌映射的改进金枪鱼群优化算法的实验结果,证明了基于混沌映射的优化方案可以有效提高原始TSO算法的收敛速度和寻优精度.
Abstract_FL As the current standard platform for cloud resource management,Kubernetes generally adopts improved methods based on swarm intelligence optimization algorithms for pod scheduling due to various shortcomings of its default scheduling mechanism.Tuna swarm optimization(TSO)is selected as the basic algorithm in this paper.And according to the ergodicity,ran-domness and other characteristics of chaos,a chaotic mapping based population initialization scheme is proposed to address the common problems of swarm intelligence optimization algorithms,such as susceptibility to initial values and premature conver-gence during later iterations.Various chaotic maps,such as Tent,Logistic,and so on,which are commonly involved in current re-search,are selected to initialize the tuna swarm respectively to improve the diversity of the initial population.Numerical experi-ments are conducted to compare the experimental results of the improved tuna swarm optimization algorithms based on different chaotic maps.It proves that the population initialization scheme based on chaotic maps can effectively improve the convergence speed and calculation accuracy of the original TSO algorithm.
Author 姜建彪
谢涛涛
宋洪圆
谈果戈
尹萍
宋伟
AuthorAffiliation 浪潮云信息技术股份公司 济南 250101
AuthorAffiliation_xml – name: 浪潮云信息技术股份公司 济南 250101
Author_FL SONG Wei
JIANG Jianbiao
TAN Guoge
XIE Taotao
SONG Hongyuan
YIN Ping
Author_FL_xml – sequence: 1
  fullname: YIN Ping
– sequence: 2
  fullname: TAN Guoge
– sequence: 3
  fullname: SONG Wei
– sequence: 4
  fullname: XIE Taotao
– sequence: 5
  fullname: JIANG Jianbiao
– sequence: 6
  fullname: SONG Hongyuan
Author_xml – sequence: 1
  fullname: 尹萍
– sequence: 2
  fullname: 谈果戈
– sequence: 3
  fullname: 宋伟
– sequence: 4
  fullname: 谢涛涛
– sequence: 5
  fullname: 姜建彪
– sequence: 6
  fullname: 宋洪圆
BookMark eNrjYmDJy89LZWCQMDTQMzS0sDTTzyrOyq7QMzI2MDMwMLAwYmHgNDQwMNI1NDaP4GDgLS7OTDIwMjYzAUJDTgb7p_N3PdnV92z79mebep7NWPB0Q8vzWS3Ppux8sX_2y_aJz-aterlxz_N9S57smfG0Z9rzddOfbZ76dP3OZ-unPF8w5fnKbTwMrGmJOcWpvFCamyHUzTXE2UPXx9_d09nRR7fY0MDYTNfQzCTFzMzcONkyLTnNwMIgMRHogiTDJBNDUwMj8yRD8yRzAwtzCzMjI7PkRLNUQzMzY7MkC1OL1ESgjwwNTIy5GdQg5pYn5qUl5qXHZ-WXFuUBbYwHe9fIwMikCmSTMQAgKGLF
ClassificationCodes TP301.6
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11896/jsjkx.230600082
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitle_FL Comparative Study on Improved Tuna Swarm Optimization Algorithm Based on Chaotic Mapping
EndPage 270
ExternalDocumentID jsjkx2024z1036
GroupedDBID -0Y
2B.
4A8
5XA
5XJ
92H
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CUBFJ
CW9
GROUPED_DOAJ
PSX
TCJ
TGT
U1G
U5S
ID FETCH-LOGICAL-s1036-164d6673c9fcf080aa364b1b415027b17b708786226ca6e16636b858ea8961043
ISSN 1002-137X
IngestDate Thu May 29 04:00:14 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue z1
Keywords Benchmark functions
金枪鱼群优化算法
Chaotic map
Swarm intelligence optimization algorithm
群智能优化算法
混沌映射
Tuna swarm optimization algorithm
基准测试函数
Kubernetes
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1036-164d6673c9fcf080aa364b1b415027b17b708786226ca6e16636b858ea8961043
PageCount 10
ParticipantIDs wanfang_journals_jsjkx2024z1036
PublicationCentury 2000
PublicationDate 2024-06-16
PublicationDateYYYYMMDD 2024-06-16
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-16
  day: 16
PublicationDecade 2020
PublicationTitle 计算机科学
PublicationTitle_FL Computer Science
PublicationYear 2024
Publisher 浪潮云信息技术股份公司 济南 250101
Publisher_xml – name: 浪潮云信息技术股份公司 济南 250101
SSID ssib023646461
ssib051375750
ssib001164759
ssj0057673
Score 2.3962789
Snippet TP301.6; Kubernetes作为当前云资源管理的标准平台,因其默认调度机制的局限性,目前普遍采用基于群智能优化算法的改进方法进行Pod的调度.而针对群智能优化算法存在的寻优性...
SourceID wanfang
SourceType Aggregation Database
StartPage 261
Title 基于混沌映射的改进金枪鱼群优化算法对比研究
URI https://d.wanfangdata.com.cn/periodical/jsjkx2024z1036
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1002-137X
  databaseCode: DOA
  dateStart: 20210101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssj0057673
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NaxNBFB_a6sGL3-K3OTinEtzZ7O7MnGR2s8FT8VAht7K7yaqtRGlqCTkHvBRBiFoUtAcverB-gKWl6D_TbOx_4Xuzk2RbD-pBCMPLfLx5H5u83wwz-wi5nrhpg7HUK0exdMoQb4FqClil2BzQgROlzIt0sgk-NyfqdXl7aro3uguz-oC3WqLTkY_-q6uhDpyNV2f_wd1jplABNDgdSnA7lH_leBq6VNaor2joYClCGnrU5_hBwqYiQEIKqizs7FtUODTkVCpNQBMMlDQU1K9R6dNQUgGtTDeFVCms8Rn1AxzlQ42j5wqQJzAE_tLDJhVSmU9aodLFJlXTnD0kpJ4UZDAE8PSKWBkFAA6KHWAlA60a1OQiAc8qVeP9RaNQLr4EzaqTFqFVFUYNqa0AX4UoDoaJhD9Sp3ZosLK1Np62iiGK-ya2g-e78mud-knXvVxtMiCqyD33CoruoH2VNqtgaBEkFJ49yfXEGhDP1n2gs48c0L7AMNAEWFPMmjnQz1BWwU6zgDiZ2b3JA45OLlPh9WJEclnhl9dlxfiSv7neQBU7z7nyexQUEndkFtuLSx086e9ppDeJ-ONzmLoHGqfLAMlMkyM2d6UobExoUI2vnJuAXsw44BVeQuiC9ID5rRH-gQUsz6-1GM1GhwNAqBuHRNI35Vpp1LpbAHXzJ8lxsxorqfxXdIpMde-dJidGmU5KJvCdITcHb3f2dp5mW1vZl7VsfWPwqTd81cv62z9_vN5_8ix782H_8-7w-7u93fXB2ovhx5fZ1-eDze1ssz_c6A_ffztL7tTC-eBW2aQeKbfREvCgOA1MiJvINElhURVFoHXMYoC7ls1jxmNuCS48WLwkkddkgNu9WLiiGYGWzHIq58hM62GreZ6UWBMYwJiGI7iTVkTsVhpRajcSB4xtc3aBXDM2WDD_Iu2Fg365-Mcel8ixySN-mcysLD9uXiFHk9WV--3lq9qdvwCOB5fF
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%B7%B7%E6%B2%8C%E6%98%A0%E5%B0%84%E7%9A%84%E6%94%B9%E8%BF%9B%E9%87%91%E6%9E%AA%E9%B1%BC%E7%BE%A4%E4%BC%98%E5%8C%96%E7%AE%97%E6%B3%95%E5%AF%B9%E6%AF%94%E7%A0%94%E7%A9%B6&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6&rft.au=%E5%B0%B9%E8%90%8D&rft.au=%E8%B0%88%E6%9E%9C%E6%88%88&rft.au=%E5%AE%8B%E4%BC%9F&rft.au=%E8%B0%A2%E6%B6%9B%E6%B6%9B&rft.date=2024-06-16&rft.pub=%E6%B5%AA%E6%BD%AE%E4%BA%91%E4%BF%A1%E6%81%AF%E6%8A%80%E6%9C%AF%E8%82%A1%E4%BB%BD%E5%85%AC%E5%8F%B8+%E6%B5%8E%E5%8D%97+250101&rft.issn=1002-137X&rft.volume=51&rft.issue=z1&rft.spage=261&rft.epage=270&rft_id=info:doi/10.11896%2Fjsjkx.230600082&rft.externalDocID=jsjkx2024z1036
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjkx%2Fjsjkx.jpg