基于混沌映射的改进金枪鱼群优化算法对比研究

TP301.6; Kubernetes作为当前云资源管理的标准平台,因其默认调度机制的局限性,目前普遍采用基于群智能优化算法的改进方法进行Pod的调度.而针对群智能优化算法存在的寻优性能易受初值影响、迭代后期容易早熟收敛等问题,选择金枪鱼群优化(Tuna Swarm Optimization,TSO)作为基础算法,根据混沌映射具有的遍历性、随机性等特点,提出了基于混沌映射的种群初始化优化方案.选择目前研究中普遍涉及的Tent、Logistic等多种混沌映射,分别对金枪鱼种群进行初始化,以提高初始种群的多样性.通过一系列基准测试函数进行仿真实验,对比基于不同混沌映射的改进金枪鱼群优化算法的实验结...

Full description

Saved in:
Bibliographic Details
Published in:计算机科学 Vol. 51; no. z1; pp. 261 - 270
Main Authors: 尹萍, 谈果戈, 宋伟, 谢涛涛, 姜建彪, 宋洪圆
Format: Journal Article
Language:Chinese
Published: 浪潮云信息技术股份公司 济南 250101 16.06.2024
Subjects:
ISSN:1002-137X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:TP301.6; Kubernetes作为当前云资源管理的标准平台,因其默认调度机制的局限性,目前普遍采用基于群智能优化算法的改进方法进行Pod的调度.而针对群智能优化算法存在的寻优性能易受初值影响、迭代后期容易早熟收敛等问题,选择金枪鱼群优化(Tuna Swarm Optimization,TSO)作为基础算法,根据混沌映射具有的遍历性、随机性等特点,提出了基于混沌映射的种群初始化优化方案.选择目前研究中普遍涉及的Tent、Logistic等多种混沌映射,分别对金枪鱼种群进行初始化,以提高初始种群的多样性.通过一系列基准测试函数进行仿真实验,对比基于不同混沌映射的改进金枪鱼群优化算法的实验结果,证明了基于混沌映射的优化方案可以有效提高原始TSO算法的收敛速度和寻优精度.
ISSN:1002-137X
DOI:10.11896/jsjkx.230600082