Aprendizaje automático para clasificar pacientes infectados por COVID-19 sobre un conjunto de datos balanceado
Machine learning techniques can help identify infected patients, detect the spread of the virus, and analyze available patient information for better care and disease control. Random forest, Neural network, and Logistic regression using a data set with information from patients confirmed by COVID-19...
Uloženo v:
| Vydáno v: | RISTI : Revista Ibérica de Sistemas e Tecnologias de Informação číslo E58; s. 330 - 343 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | španělština |
| Vydáno: |
Lousada
Associação Ibérica de Sistemas e Tecnologias de Informacao
01.05.2023
|
| Témata: | |
| ISSN: | 1646-9895 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Machine learning techniques can help identify infected patients, detect the spread of the virus, and analyze available patient information for better care and disease control. Random forest, Neural network, and Logistic regression using a data set with information from patients confirmed by COVID-19 from a hospital. The results show that the random forest algorithm presents a better performance in the quality measures of Precision, Sensitivity, and Specificity with the balanced data set. Keywords: COVID-19; Balanced data set; Machine learning, Classification; Prediction. 1. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1646-9895 |