An Effective Approach for Abstractive Text Summarization using Semantic Graph Model

Keywords Text summarization, Multi-document abstractive summarization, Semantic graph model, Sentence embedding, Graph-based ranking algorithm (ProQuest: ... denotes formulae omited.) Introduction In this digitalized era, it is easy to share and extract information from the world wide web. In the re...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Annals of the Romanian society for cell biology Ročník 25; číslo 4; s. 13925 - 13933
Hlavní autoři: Selvan, R Senthamizh, Arutchelvan, K
Médium: Journal Article
Jazyk:angličtina
Vydáno: Arad "Vasile Goldis" Western University Arad, Romania 01.01.2021
Témata:
ISSN:2067-3019, 2067-8282
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Keywords Text summarization, Multi-document abstractive summarization, Semantic graph model, Sentence embedding, Graph-based ranking algorithm (ProQuest: ... denotes formulae omited.) Introduction In this digitalized era, it is easy to share and extract information from the world wide web. In the research paper [26] the authors have introduced an availability model dependent on diagram, which expects that hubs which are connected to a few different hubs are most likely to convey critical data. In this proposed work it has introduced a new ranking algorithm using the degree of vertices to rank the connected sentences. Summary Generation A.Text Preprocessing In the natural language processing, preprocessing is the precise step that is used to clean and transform the data for the
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2067-3019
2067-8282