Clustering Algorithm of Uncertain Data in Obstacle Space

In recent years, uncertain data is generated widely in location data due to the inaccuracy of measurement instruction or the data attributes itself. The existence of obstacles in space brings the new challenges to spatial uncertain data clustering. This paper proposes OBS-UK-means (obstacle uncertai...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Jisuanji Kexue yu Tansuo / Journal of Computer Science and Frontiers Ročník 6; číslo 12; s. 1087 - 1097
Hlavní autoři: Cao, Keyan, Wang, Guoren, Han, Donghong, Yuan, Ye, Hu, Yachao, Qi, Baolei
Médium: Journal Article
Jazyk:čínština
Vydáno: 01.12.2012
Témata:
ISSN:1673-9418
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In recent years, uncertain data is generated widely in location data due to the inaccuracy of measurement instruction or the data attributes itself. The existence of obstacles in space brings the new challenges to spatial uncertain data clustering. This paper proposes OBS-UK-means (obstacle uncertain K-means) algorithm to cluster uncertain data in obstacle space, and also proposes two pruning strategies based on R-tree and Voronoi diagram and the shortest distance area concept, that greatly reduces the calculations. Finally, the experiment demonstrates that the efficiency and accuracy of the OBS-UK-means algorithm, and the pruning approach can improve the efficiency of the clustering algorithm, meanwhile, it doesn't damage the cluster effectiveness.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:1673-9418
DOI:10.3778/j.issn.1673-9418.2012.12.003