Large deviations theory and efficient simulation of excessive backlogs in a < e1 > GI < /e1 > / < e1 > GI < /e1 > / < e1 > m < /e1 > queue
The problem of using importance sampling to estimate the average time to buffer overflow in a stable < e1 > GI < /e1 > / < e1 > GI < /e1 > / < e1 > m < /e1 > queue is considered. Using the notion of busy cycles, estimation of the expected time to buffer overflow i...
Uloženo v:
| Vydáno v: | IEEE transactions on automatic control Ročník 36; číslo 12; s. 1383 - 1394 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
01.12.1991
|
| ISSN: | 0018-9286 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The problem of using importance sampling to estimate the average time to buffer overflow in a stable < e1 > GI < /e1 > / < e1 > GI < /e1 > / < e1 > m < /e1 > queue is considered. Using the notion of busy cycles, estimation of the expected time to buffer overflow is reduced to the problem of estimating < e1 > p < /e1 > (n)= < e1 > P < /e1 > (buffer overflow during a cycle) where < e1 > n < /e1 > is the buffer size. The probability < e1 > p < /e1 > (n) is a large deviations probability ( < e1 > p < /e1 > (n) vanishes exponentially fast as < e1 > n < /e1 > - > {infinity}). A rigorous analysis of the method is presented. It is demonstrated that the exponentially twisted distribution of S. Parekh and J. Walrand (1989) has the following strong asymptotic-optimality property within the nonparametric class of all < e1 > GI < /e1 > / < e1 > GI < /e1 > importance sampling simulation distributions. As < e1 > n < /e1 > - > {infinity}, the computational cost of the optimal twisted distribution of large deviations theory grows less than exponentially fast, and conversely, all other < e1 > GI < /e1 > / < e1 > GI < /e1 > simulation distributions incur a computational cost that grows with strictly positive exponential rate |
|---|---|
| Bibliografie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0018-9286 |
| DOI: | 10.1109/9.106154 |