Large deviations theory and efficient simulation of excessive backlogs in a < e1 > GI < /e1 > / < e1 > GI < /e1 > / < e1 > m < /e1 > queue
The problem of using importance sampling to estimate the average time to buffer overflow in a stable < e1 > GI < /e1 > / < e1 > GI < /e1 > / < e1 > m < /e1 > queue is considered. Using the notion of busy cycles, estimation of the expected time to buffer overflow i...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on automatic control Jg. 36; H. 12; S. 1383 - 1394 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
01.12.1991
|
| ISSN: | 0018-9286 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | The problem of using importance sampling to estimate the average time to buffer overflow in a stable < e1 > GI < /e1 > / < e1 > GI < /e1 > / < e1 > m < /e1 > queue is considered. Using the notion of busy cycles, estimation of the expected time to buffer overflow is reduced to the problem of estimating < e1 > p < /e1 > (n)= < e1 > P < /e1 > (buffer overflow during a cycle) where < e1 > n < /e1 > is the buffer size. The probability < e1 > p < /e1 > (n) is a large deviations probability ( < e1 > p < /e1 > (n) vanishes exponentially fast as < e1 > n < /e1 > - > {infinity}). A rigorous analysis of the method is presented. It is demonstrated that the exponentially twisted distribution of S. Parekh and J. Walrand (1989) has the following strong asymptotic-optimality property within the nonparametric class of all < e1 > GI < /e1 > / < e1 > GI < /e1 > importance sampling simulation distributions. As < e1 > n < /e1 > - > {infinity}, the computational cost of the optimal twisted distribution of large deviations theory grows less than exponentially fast, and conversely, all other < e1 > GI < /e1 > / < e1 > GI < /e1 > simulation distributions incur a computational cost that grows with strictly positive exponential rate |
|---|---|
| Bibliographie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0018-9286 |
| DOI: | 10.1109/9.106154 |