Optimality condition and iterative thresholding algorithm for [Formula: see text]-regularization problems

This paper investigates the [Formula: see text]-regularization problems, which has a broad applications in compressive sensing, variable selection problems and sparse least squares fitting for high dimensional data. We derive the exact lower bounds for the absolute value of nonzero entries in each g...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SpringerPlus Ročník 5; číslo 1; s. 1873
Hlavní autoři: Jiao, Hongwei, Chen, Yongqiang, Yin, Jingben
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland 2016
Témata:
ISSN:2193-1801, 2193-1801
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper investigates the [Formula: see text]-regularization problems, which has a broad applications in compressive sensing, variable selection problems and sparse least squares fitting for high dimensional data. We derive the exact lower bounds for the absolute value of nonzero entries in each global optimal solution of the model, which clearly demonstrates the relation between the sparsity of the optimum solution and the choice of the regularization parameter and norm. We also establish the necessary condition for global optimum solutions of [Formula: see text]-regularization problems, i.e., the global optimum solutions are fixed points of a vector thresholding operator. In addition, by selecting parameters carefully, a global minimizer which will have certain desired sparsity can be obtained. Finally, an iterative thresholding algorithm is designed for solving the [Formula: see text]-regularization problems, and any accumulation point of the sequence generated by the designed algorithm is convergent to a fixed point of the vector thresholding operator.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2193-1801
2193-1801
DOI:10.1186/s40064-016-3516-3