The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded

The coefficient of determination R2 quantifies the proportion of variance explained by a statistical model and is an important summary statistic of biological interest. However, estimating R2 for generalized linear mixed models (GLMMs) remains challenging. We have previously introduced a version of...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of the Royal Society interface Ročník 14; číslo 134
Hlavní autori: Nakagawa, Shinichi, Johnson, Paul C D, Schielzeth, Holger
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: 01.09.2017
ISSN:1742-5662, 1742-5662
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The coefficient of determination R2 quantifies the proportion of variance explained by a statistical model and is an important summary statistic of biological interest. However, estimating R2 for generalized linear mixed models (GLMMs) remains challenging. We have previously introduced a version of R2 that we called [Formula: see text] for Poisson and binomial GLMMs, but not for other distributional families. Similarly, we earlier discussed how to estimate intra-class correlation coefficients (ICCs) using Poisson and binomial GLMMs. In this paper, we generalize our methods to all other non-Gaussian distributions, in particular to negative binomial and gamma distributions that are commonly used for modelling biological data. While expanding our approach, we highlight two useful concepts for biologists, Jensen's inequality and the delta method, both of which help us in understanding the properties of GLMMs. Jensen's inequality has important implications for biologically meaningful interpretation of GLMMs, whereas the delta method allows a general derivation of variance associated with non-Gaussian distributions. We also discuss some special considerations for binomial GLMMs with binary or proportion data. We illustrate the implementation of our extension by worked examples from the field of ecology and evolution in the R environment. However, our method can be used across disciplines and regardless of statistical environments.The coefficient of determination R2 quantifies the proportion of variance explained by a statistical model and is an important summary statistic of biological interest. However, estimating R2 for generalized linear mixed models (GLMMs) remains challenging. We have previously introduced a version of R2 that we called [Formula: see text] for Poisson and binomial GLMMs, but not for other distributional families. Similarly, we earlier discussed how to estimate intra-class correlation coefficients (ICCs) using Poisson and binomial GLMMs. In this paper, we generalize our methods to all other non-Gaussian distributions, in particular to negative binomial and gamma distributions that are commonly used for modelling biological data. While expanding our approach, we highlight two useful concepts for biologists, Jensen's inequality and the delta method, both of which help us in understanding the properties of GLMMs. Jensen's inequality has important implications for biologically meaningful interpretation of GLMMs, whereas the delta method allows a general derivation of variance associated with non-Gaussian distributions. We also discuss some special considerations for binomial GLMMs with binary or proportion data. We illustrate the implementation of our extension by worked examples from the field of ecology and evolution in the R environment. However, our method can be used across disciplines and regardless of statistical environments.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1742-5662
1742-5662
DOI:10.1098/rsif.2017.0213