Dissection of the structure-function relationship of Nav channels

Voltage-gated sodium channels (Nav) undergo conformational shifts in response to membrane potential changes, a mechanism known as the electromechanical coupling. To delineate the structure-function relationship of human Nav channels, we have performed systematic structural analysis using human Nav1....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS Jg. 121; H. 9; S. e2322899121
Hauptverfasser: Li, Zhangqiang, Wu, Qiurong, Huang, Gaoxingyu, Jin, Xueqin, Li, Jiaao, Pan, Xiaojing, Yan, Nieng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 27.02.2024
ISSN:1091-6490, 1091-6490
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Voltage-gated sodium channels (Nav) undergo conformational shifts in response to membrane potential changes, a mechanism known as the electromechanical coupling. To delineate the structure-function relationship of human Nav channels, we have performed systematic structural analysis using human Nav1.7 as a prototype. Guided by the structural differences between wild-type (WT) Nav1.7 and an eleven mutation-containing variant, designated Nav1.7-M11, we generated three additional intermediate mutants and solved their structures at overall resolutions of 2.9-3.4 Å. The mutant with nine-point mutations in the pore domain (PD), named Nav1.7-M9, has a reduced cavity volume and a sealed gate, with all voltage-sensing domains (VSDs) remaining up. Structural comparison of WT and Nav1.7-M9 pinpoints two residues that may be critical to the tightening of the PD. However, the variant containing these two mutations, Nav1.7-M2, or even in combination with two additional mutations in the VSDs, named Nav1.7-M4, failed to tighten the PD. Our structural analysis reveals a tendency of PD contraction correlated with the right shift of the static inactivation I-V curves. We predict that the channel in the resting state should have a "tight" PD with down VSDs.Voltage-gated sodium channels (Nav) undergo conformational shifts in response to membrane potential changes, a mechanism known as the electromechanical coupling. To delineate the structure-function relationship of human Nav channels, we have performed systematic structural analysis using human Nav1.7 as a prototype. Guided by the structural differences between wild-type (WT) Nav1.7 and an eleven mutation-containing variant, designated Nav1.7-M11, we generated three additional intermediate mutants and solved their structures at overall resolutions of 2.9-3.4 Å. The mutant with nine-point mutations in the pore domain (PD), named Nav1.7-M9, has a reduced cavity volume and a sealed gate, with all voltage-sensing domains (VSDs) remaining up. Structural comparison of WT and Nav1.7-M9 pinpoints two residues that may be critical to the tightening of the PD. However, the variant containing these two mutations, Nav1.7-M2, or even in combination with two additional mutations in the VSDs, named Nav1.7-M4, failed to tighten the PD. Our structural analysis reveals a tendency of PD contraction correlated with the right shift of the static inactivation I-V curves. We predict that the channel in the resting state should have a "tight" PD with down VSDs.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1091-6490
1091-6490
DOI:10.1073/pnas.2322899121