Coupling Adsorbed Evolution and Lattice Oxygen Mechanism in Fe‐Co(OH)2/Fe2O3 Heterostructure for Enhanced Electrochemical Water Oxidation
Oxygen evolution reaction (OER) remains a bottleneck for electrocatalytic water‐splitting to generate hydrogen. However, the traditional adsorbed evolution mechanism (AEM) possesses sluggish reaction kinetics due to the scaling relationship, while lattice oxygen mechanism (LOM) triggers an unstable...
Saved in:
| Published in: | Advanced functional materials Vol. 33; no. 45 |
|---|---|
| Main Authors: | , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Hoboken
Wiley Subscription Services, Inc
02.11.2023
|
| Subjects: | |
| ISSN: | 1616-301X, 1616-3028 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Oxygen evolution reaction (OER) remains a bottleneck for electrocatalytic water‐splitting to generate hydrogen. However, the traditional adsorbed evolution mechanism (AEM) possesses sluggish reaction kinetics due to the scaling relationship, while lattice oxygen mechanism (LOM) triggers an unstable structure due to the escaping of lattice oxygen. Herein, a proof‐of‐concept Fe‐Co(OH)2/Fe2O3 heterostructure is put forward, where Fe‐Co(OH)2 following AEM can complete rapidly deprotonation process while Fe2O3 following LOM can trigger O─O coupling step. Combining the theoretical and experimental investigation confirmed that the redistributed space‐charge of Fe‐Co(OH)2/Fe2O3 junction can optimize synergistically adsorbed and lattice oxygen, the coupling mechanism of AEM and LOM can facilitate synchronously the OER activity and stability. As a result, the Fe‐Co(OH)2/Fe2O3 heterostructure shows excellent OER performance with low overpotential of only 219 and 249 mV to reach a current density of 10 and 100 mA cm−2. Specifically, the Fe‐Co(OH)2/Fe2O3 electrocatalyst maintains excellent long‐term stability for 100 h at a large current density of 100 mA cm−2. This work paves an avenue to break through the limit of the conventional OER mechanism.
A proof‐of‐concept Fe‐Co(OH)2/Fe2O3 heterostructure catalyst with high activity and stability is designed and fabricated. The coupling mechanism of AEM and LOM can break through the limit of the conventional OER mechanism to facilitate the OER activity and stability. This work offers a possible coupling mechanism for designing and explaining high‐performance OER electrocatalysts. |
|---|---|
| AbstractList | Oxygen evolution reaction (OER) remains a bottleneck for electrocatalytic water‐splitting to generate hydrogen. However, the traditional adsorbed evolution mechanism (AEM) possesses sluggish reaction kinetics due to the scaling relationship, while lattice oxygen mechanism (LOM) triggers an unstable structure due to the escaping of lattice oxygen. Herein, a proof‐of‐concept Fe‐Co(OH)2/Fe2O3 heterostructure is put forward, where Fe‐Co(OH)2 following AEM can complete rapidly deprotonation process while Fe2O3 following LOM can trigger O─O coupling step. Combining the theoretical and experimental investigation confirmed that the redistributed space‐charge of Fe‐Co(OH)2/Fe2O3 junction can optimize synergistically adsorbed and lattice oxygen, the coupling mechanism of AEM and LOM can facilitate synchronously the OER activity and stability. As a result, the Fe‐Co(OH)2/Fe2O3 heterostructure shows excellent OER performance with low overpotential of only 219 and 249 mV to reach a current density of 10 and 100 mA cm−2. Specifically, the Fe‐Co(OH)2/Fe2O3 electrocatalyst maintains excellent long‐term stability for 100 h at a large current density of 100 mA cm−2. This work paves an avenue to break through the limit of the conventional OER mechanism. Oxygen evolution reaction (OER) remains a bottleneck for electrocatalytic water‐splitting to generate hydrogen. However, the traditional adsorbed evolution mechanism (AEM) possesses sluggish reaction kinetics due to the scaling relationship, while lattice oxygen mechanism (LOM) triggers an unstable structure due to the escaping of lattice oxygen. Herein, a proof‐of‐concept Fe‐Co(OH)2/Fe2O3 heterostructure is put forward, where Fe‐Co(OH)2 following AEM can complete rapidly deprotonation process while Fe2O3 following LOM can trigger O─O coupling step. Combining the theoretical and experimental investigation confirmed that the redistributed space‐charge of Fe‐Co(OH)2/Fe2O3 junction can optimize synergistically adsorbed and lattice oxygen, the coupling mechanism of AEM and LOM can facilitate synchronously the OER activity and stability. As a result, the Fe‐Co(OH)2/Fe2O3 heterostructure shows excellent OER performance with low overpotential of only 219 and 249 mV to reach a current density of 10 and 100 mA cm−2. Specifically, the Fe‐Co(OH)2/Fe2O3 electrocatalyst maintains excellent long‐term stability for 100 h at a large current density of 100 mA cm−2. This work paves an avenue to break through the limit of the conventional OER mechanism. A proof‐of‐concept Fe‐Co(OH)2/Fe2O3 heterostructure catalyst with high activity and stability is designed and fabricated. The coupling mechanism of AEM and LOM can break through the limit of the conventional OER mechanism to facilitate the OER activity and stability. This work offers a possible coupling mechanism for designing and explaining high‐performance OER electrocatalysts. |
| Author | Tang, Yu Li, Caiju Xin, Sisi Wang, Jinsong Jia, Baohua Ma, Tianyi Zhang, Zhengfu Li, Chengping Yi, Jianhong Bao, Rui |
| Author_xml | – sequence: 1 givenname: Sisi surname: Xin fullname: Xin, Sisi organization: Kunming University of Science and Technology – sequence: 2 givenname: Yu surname: Tang fullname: Tang, Yu email: 2033160003@ynnu.edu.cn organization: Yunnan Normal University – sequence: 3 givenname: Baohua surname: Jia fullname: Jia, Baohua organization: RMIT University – sequence: 4 givenname: Zhengfu surname: Zhang fullname: Zhang, Zhengfu organization: Kunming University of Science and Technology – sequence: 5 givenname: Chengping surname: Li fullname: Li, Chengping organization: Kunming University of Science and Technology – sequence: 6 givenname: Rui surname: Bao fullname: Bao, Rui organization: Kunming University of Science and Technology – sequence: 7 givenname: Caiju surname: Li fullname: Li, Caiju organization: Kunming University of Science and Technology – sequence: 8 givenname: Jianhong surname: Yi fullname: Yi, Jianhong organization: Kunming University of Science and Technology – sequence: 9 givenname: Jinsong orcidid: 0000-0002-2897-665X surname: Wang fullname: Wang, Jinsong email: jswang512@kust.edu.cn organization: Nankai University – sequence: 10 givenname: Tianyi orcidid: 0000-0002-1042-8700 surname: Ma fullname: Ma, Tianyi email: tianyi.ma@rmit.edu.au organization: RMIT University |
| BookMark | eNo9kDtPwzAUhS1UJNrCymyJBYa0fuQ5VqWhSK26gGCLHPumdZXaxUmAbuws_EZ-CYmKOt17pXO_o3MGqGesAYSuKRlRQthYqGI3YoRxEjCfn6E-DWnoccLi3mmnrxdoUFVbQmgUcb-Pvqe22ZfarPFEVdbloPDs3ZZNra3Bwii8EHWtJeDV52ENBi9BboTR1Q5rg1P4_fqZ2tvV_I6NU2ArjudQg7NV7RpZNw5wYR2emfZFduQSZO2s3MBOS1HiF9GKW7JWovO7ROeFKCu4-p9D9JzOnqZzb7F6eJxOFt6eRZx7fqFA5gqEDKKAxm1YGUUJhYiy3JcQEL-gwGOZJBDleeCrkAqmSAyUUcpYwofo5sjdO_vWQFVnW9s401pmLG55lPih36qSo-pDl3DI9k7vhDtklGRd21nXdnZqO5vcp8vTxf8A6155Kg |
| ContentType | Journal Article |
| Copyright | 2023 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH – notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
| DOI | 10.1002/adfm.202305243 |
| DatabaseName | Wiley Online Library Open Access Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1616-3028 |
| EndPage | n/a |
| ExternalDocumentID | ADFM202305243 |
| Genre | article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 52101258 – fundername: Yunnan Fundamental Research Projects funderid: 202301AT070426; 202101BE070001‐042; 202101AU070028 |
| GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT 7SP 7SR 7U5 8BQ 8FD AAMMB ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 L7M |
| ID | FETCH-LOGICAL-p2733-4fdecbdeac57518524c7791e712b4ce504f1e38c99e7bb54d61a2d08e12112293 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 173 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001059827500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1616-301X |
| IngestDate | Mon Jul 14 10:25:18 EDT 2025 Wed Jan 22 16:17:23 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 45 |
| Language | English |
| License | Attribution |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-p2733-4fdecbdeac57518524c7791e712b4ce504f1e38c99e7bb54d61a2d08e12112293 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2897-665X 0000-0002-1042-8700 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202305243 |
| PQID | 2885210464 |
| PQPubID | 2045204 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_2885210464 wiley_primary_10_1002_adfm_202305243_ADFM202305243 |
| PublicationCentury | 2000 |
| PublicationDate | November 2, 2023 |
| PublicationDateYYYYMMDD | 2023-11-02 |
| PublicationDate_xml | – month: 11 year: 2023 text: November 2, 2023 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Advanced functional materials |
| PublicationYear | 2023 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2023; 76 2023; 35 2023; 14 2019; 3 2019; 31 2023; 480 2019; 12 2019; 56 1974; 249 2020; 78 2020; 11 2023; 2 2021; 143 2021; 50 2012; 11 2021; 90 2021; 14 2020; 8 2018; 9 2018; 8 2016; 7 2021; 12 2021; 33 2020; 30 2022; 61 1993; 97 2022; 12 2022; 34 2016; 311 2022; 14 2022; 15 2022; 32 2022; 2 2017; 543 2016; 26 |
| References_xml | – volume: 78 year: 2020 publication-title: Nano Energy – volume: 14 start-page: 112 year: 2022 publication-title: Nano‐Micro Lett. – volume: 14 year: 2022 publication-title: Nanoscale – volume: 50 start-page: 6700 year: 2021 publication-title: Chem. Soc. Rev. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 53 year: 2023 publication-title: J. Alloys Compd. – volume: 11 start-page: 4066 year: 2020 publication-title: Nat. Commun. – volume: 26 start-page: 3331 year: 2016 publication-title: Adv. Funct. Mater. – volume: 3 start-page: 557 year: 2019 publication-title: Joule – volume: 143 start-page: 2217 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 56 start-page: 109 year: 2019 publication-title: Nano Energy – volume: 8 start-page: 2001 year: 2020 publication-title: J. Mater. Chem. A – volume: 9 start-page: 2373 year: 2018 publication-title: Nat. Commun. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 76 start-page: 195 year: 2023 publication-title: J. Energy Chem. – volume: 90 year: 2021 publication-title: Nano Energy – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 249 start-page: 724 year: 1974 publication-title: Nature – volume: 7 start-page: 4847 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 480 year: 2023 publication-title: Coord. Chem. Rev. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 14 start-page: 4647 year: 2021 publication-title: Energy Environ. Sci. – volume: 543 start-page: 37 year: 2017 publication-title: Nature – volume: 311 start-page: 11 year: 2016 publication-title: J. Hazard. Mater. – volume: 12 start-page: 463 year: 2019 publication-title: Energy Environ. Sci. – volume: 50 year: 2021 publication-title: Chem. Soc. Rev. – volume: 2 start-page: 84 year: 2022 publication-title: Nat. Rev. Methods Primers – volume: 14 start-page: 1873 year: 2023 publication-title: Nat. Commun. – volume: 15 start-page: 2952 year: 2022 publication-title: Nano Res. – volume: 97 year: 1993 publication-title: J. Phys. Chem. – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 50 start-page: 1354 year: 2021 publication-title: Chem. Soc. Rev. – volume: 12 year: 2022 publication-title: ACS Catal. – volume: 11 start-page: 550 year: 2012 publication-title: Nat. Mater. – volume: 12 start-page: 3992 year: 2021 publication-title: Nat. Commun. |
| SSID | ssj0017734 |
| Score | 2.705313 |
| Snippet | Oxygen evolution reaction (OER) remains a bottleneck for electrocatalytic water‐splitting to generate hydrogen. However, the traditional adsorbed evolution... |
| SourceID | proquest wiley |
| SourceType | Aggregation Database Publisher |
| SubjectTerms | adsorbed evolution mechanism Cobalt Coupling Current density Electrocatalysts Heterostructures Iron lattice oxygen mechanism Materials science Oxidation oxygen evolution reaction Oxygen evolution reactions Reaction kinetics Stability Water splitting |
| Title | Coupling Adsorbed Evolution and Lattice Oxygen Mechanism in Fe‐Co(OH)2/Fe2O3 Heterostructure for Enhanced Electrochemical Water Oxidation |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202305243 https://www.proquest.com/docview/2885210464 |
| Volume | 33 |
| WOSCitedRecordID | wos001059827500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1616-3028 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017734 issn: 1616-301X databaseCode: DRFUL dateStart: 20010101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWgMMDAN6J8VB4YYIiaOHYcj1XbqEOhFaKiWxTnHOhAUjWAYGNn4TfyS7CTtJQVtmSIk5zvnOfcvXcInQsmgbmcWgllkUWlzS3pgWsJgIQ5YIuEQNFsgl9f--OxGC6x-Et9iMUPNxMZxXptAjySefNHNDSCxDDJNYRmhLqraM0wq_T2a61zE4z6i0wC52Vm2XNMjZczngs32qT5e4RfEHMZqBZfmmD7_8-4g7YqlIlbpVvsohWV7qHNJe3BffTRzp4NG_cetyDPZlIB7r5UfoijFHA_ejKFcXjw-qadDF8pwxGe5I94kuJAfb1_trOLQe-SNANFBi7umbqarJSjfZ4prMEw7qYPRYEB7pbNduJKnQDfaYQ70yNPyo5OB2gUdG_bPavqzGBNNdxxLZqAiiXoRbtI2-iXizkXjuIOkTRWzKaJo1w_FkJxKRkFz4kI2L4ygnJEI4xDVEuzVB0hDMxLRMxspXEaFaB3f5RyDxzGCfXBJnV0Op-WsAqvPCS-vqfJTtM6IsUEhNNSnCMsZZhJaEwfLkwftjrB1eLs-C8XnaANc1zwEMkpqml7qjO0Hr88TfJZA60SOmxUzvcNj3na-Q |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT4QwEG50NVEPvo3rswcPeiALpaX0uFkha9yHB417I8AU5SBs2NXozbsXf6O_xBZw1avxCEkLTKftR-ebbxA6ESwCZnNqJJSFBo1MbkQO2IYASJgFpkgIlMUm-GDgjkbiqmYT6lyYSh9iduCmZ0a5XusJrg-kW9-qoSEkOpVcYWhGqD2PFqjamjSrj9CrWSCB8yqw7Fia4mWNvnQbTdL63f4XwvyJU8uNxl_7h1dcR6s1ysTtyi020JzMNtHKD-3BLfTWyR91Nu4dbsMkLyIJ2Huq_RCHGeBeONXEODx8flFOhvtS5winkwecZtiXH6_vnfx02D0jLV-SoY27mleTV3K0j4XECgxjL7svCQbYq4rtxLU6Ab5VCLdQPadVRadtdON7152uUVdmMMYK7tgGTUDGEahFuwzbqI-LOReW5BaJaCyZSRNL2m4shORRxCg4VkjAdKUWlCMKYeygRpZnchdhYE4iYmZKhdOoAPX3Ryl3wGKcUBdM0kQHX-MS1NNrEhBXPVNHp2kTkXIEgnElzhFUMswk0KYPZqYP2ud-f3a195dGx2ipe93vBb2LweU-Wtb3y5xEcoAayrbyEC3GT9N0UhyVHvgJfPXcdw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagIAQDb8QbDwwwRE0cO47Hqm1URF8DiG5RknOgA0nVAoKNnYXfyC_BdkJpV8SYSM7jfOd88X33HULngsXAXE6tlLLIorHNrdgD1xIAKXPAFikB02yCd7v-YCD6JZtQ18IU-hDTDTcdGWa91gEuR5BWf1VDI0h1KbnC0IxQdxEtUcZNbBLanyYSOC8Sy56jKV7O4Ee30SbV-fFzCHMWp5oPTbDxD4-4idZLlIlrhVtsoQWZbaO1Ge3BHfRRz591Ne49rsEkH8cScPOl9EMcZYDb0ZMmxuHe65tyMtyRukZ4OHnEwwwH8uv9s55f9FqXpBpI0nNxS_Nq8kKO9nkssQLDuJk9GIIBbhbNdpJSnQDfKYQ7VlceFh2ddtFt0Lypt6yyM4M1UnDHtWgKMolBLdombaNeLuFcOJI7JKaJZDZNHen6iRCSxzGj4DkRAduXWlCOKISxhypZnsl9hIF5qUiYLRVOowLU3x-l3AOHcUJ9sMkBOv6Zl7AMr0lIfHVPnZ2mB4iYGQhHhThHWMgwk1CbPpyaPqw1gs706PAvg87QSr8RhO2r7vURWtWnTUkiOUYVZVp5gpaTl6fhZHxqHPAbOrHb8g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coupling+Adsorbed+Evolution+and+Lattice+Oxygen+Mechanism+in+Fe%E2%80%90Co%28OH%292%2FFe2O3+Heterostructure+for+Enhanced+Electrochemical+Water+Oxidation&rft.jtitle=Advanced+functional+materials&rft.au=Sisi+Xin&rft.au=Tang%2C+Yu&rft.au=Jia%2C+Baohua&rft.au=Zhang%2C+Zhengfu&rft.date=2023-11-02&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=45&rft_id=info:doi/10.1002%2Fadfm.202305243&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |