Coupling Adsorbed Evolution and Lattice Oxygen Mechanism in Fe‐Co(OH)2/Fe2O3 Heterostructure for Enhanced Electrochemical Water Oxidation

Oxygen evolution reaction (OER) remains a bottleneck for electrocatalytic water‐splitting to generate hydrogen. However, the traditional adsorbed evolution mechanism (AEM) possesses sluggish reaction kinetics due to the scaling relationship, while lattice oxygen mechanism (LOM) triggers an unstable...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials Vol. 33; no. 45
Main Authors: Xin, Sisi, Tang, Yu, Jia, Baohua, Zhang, Zhengfu, Li, Chengping, Bao, Rui, Li, Caiju, Yi, Jianhong, Wang, Jinsong, Ma, Tianyi
Format: Journal Article
Language:English
Published: Hoboken Wiley Subscription Services, Inc 02.11.2023
Subjects:
ISSN:1616-301X, 1616-3028
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Oxygen evolution reaction (OER) remains a bottleneck for electrocatalytic water‐splitting to generate hydrogen. However, the traditional adsorbed evolution mechanism (AEM) possesses sluggish reaction kinetics due to the scaling relationship, while lattice oxygen mechanism (LOM) triggers an unstable structure due to the escaping of lattice oxygen. Herein, a proof‐of‐concept Fe‐Co(OH)2/Fe2O3 heterostructure is put forward, where Fe‐Co(OH)2 following AEM can complete rapidly deprotonation process while Fe2O3 following LOM can trigger O─O coupling step. Combining the theoretical and experimental investigation confirmed that the redistributed space‐charge of Fe‐Co(OH)2/Fe2O3 junction can optimize synergistically adsorbed and lattice oxygen, the coupling mechanism of AEM and LOM can facilitate synchronously the OER activity and stability. As a result, the Fe‐Co(OH)2/Fe2O3 heterostructure shows excellent OER performance with low overpotential of only 219 and 249 mV to reach a current density of 10 and 100 mA cm−2. Specifically, the Fe‐Co(OH)2/Fe2O3 electrocatalyst maintains excellent long‐term stability for 100 h at a large current density of 100 mA cm−2. This work paves an avenue to break through the limit of the conventional OER mechanism. A proof‐of‐concept Fe‐Co(OH)2/Fe2O3 heterostructure catalyst with high activity and stability is designed and fabricated. The coupling mechanism of AEM and LOM can break through the limit of the conventional OER mechanism to facilitate the OER activity and stability. This work offers a possible coupling mechanism for designing and explaining high‐performance OER electrocatalysts.
AbstractList Oxygen evolution reaction (OER) remains a bottleneck for electrocatalytic water‐splitting to generate hydrogen. However, the traditional adsorbed evolution mechanism (AEM) possesses sluggish reaction kinetics due to the scaling relationship, while lattice oxygen mechanism (LOM) triggers an unstable structure due to the escaping of lattice oxygen. Herein, a proof‐of‐concept Fe‐Co(OH)2/Fe2O3 heterostructure is put forward, where Fe‐Co(OH)2 following AEM can complete rapidly deprotonation process while Fe2O3 following LOM can trigger O─O coupling step. Combining the theoretical and experimental investigation confirmed that the redistributed space‐charge of Fe‐Co(OH)2/Fe2O3 junction can optimize synergistically adsorbed and lattice oxygen, the coupling mechanism of AEM and LOM can facilitate synchronously the OER activity and stability. As a result, the Fe‐Co(OH)2/Fe2O3 heterostructure shows excellent OER performance with low overpotential of only 219 and 249 mV to reach a current density of 10 and 100 mA cm−2. Specifically, the Fe‐Co(OH)2/Fe2O3 electrocatalyst maintains excellent long‐term stability for 100 h at a large current density of 100 mA cm−2. This work paves an avenue to break through the limit of the conventional OER mechanism.
Oxygen evolution reaction (OER) remains a bottleneck for electrocatalytic water‐splitting to generate hydrogen. However, the traditional adsorbed evolution mechanism (AEM) possesses sluggish reaction kinetics due to the scaling relationship, while lattice oxygen mechanism (LOM) triggers an unstable structure due to the escaping of lattice oxygen. Herein, a proof‐of‐concept Fe‐Co(OH)2/Fe2O3 heterostructure is put forward, where Fe‐Co(OH)2 following AEM can complete rapidly deprotonation process while Fe2O3 following LOM can trigger O─O coupling step. Combining the theoretical and experimental investigation confirmed that the redistributed space‐charge of Fe‐Co(OH)2/Fe2O3 junction can optimize synergistically adsorbed and lattice oxygen, the coupling mechanism of AEM and LOM can facilitate synchronously the OER activity and stability. As a result, the Fe‐Co(OH)2/Fe2O3 heterostructure shows excellent OER performance with low overpotential of only 219 and 249 mV to reach a current density of 10 and 100 mA cm−2. Specifically, the Fe‐Co(OH)2/Fe2O3 electrocatalyst maintains excellent long‐term stability for 100 h at a large current density of 100 mA cm−2. This work paves an avenue to break through the limit of the conventional OER mechanism. A proof‐of‐concept Fe‐Co(OH)2/Fe2O3 heterostructure catalyst with high activity and stability is designed and fabricated. The coupling mechanism of AEM and LOM can break through the limit of the conventional OER mechanism to facilitate the OER activity and stability. This work offers a possible coupling mechanism for designing and explaining high‐performance OER electrocatalysts.
Author Tang, Yu
Li, Caiju
Xin, Sisi
Wang, Jinsong
Jia, Baohua
Ma, Tianyi
Zhang, Zhengfu
Li, Chengping
Yi, Jianhong
Bao, Rui
Author_xml – sequence: 1
  givenname: Sisi
  surname: Xin
  fullname: Xin, Sisi
  organization: Kunming University of Science and Technology
– sequence: 2
  givenname: Yu
  surname: Tang
  fullname: Tang, Yu
  email: 2033160003@ynnu.edu.cn
  organization: Yunnan Normal University
– sequence: 3
  givenname: Baohua
  surname: Jia
  fullname: Jia, Baohua
  organization: RMIT University
– sequence: 4
  givenname: Zhengfu
  surname: Zhang
  fullname: Zhang, Zhengfu
  organization: Kunming University of Science and Technology
– sequence: 5
  givenname: Chengping
  surname: Li
  fullname: Li, Chengping
  organization: Kunming University of Science and Technology
– sequence: 6
  givenname: Rui
  surname: Bao
  fullname: Bao, Rui
  organization: Kunming University of Science and Technology
– sequence: 7
  givenname: Caiju
  surname: Li
  fullname: Li, Caiju
  organization: Kunming University of Science and Technology
– sequence: 8
  givenname: Jianhong
  surname: Yi
  fullname: Yi, Jianhong
  organization: Kunming University of Science and Technology
– sequence: 9
  givenname: Jinsong
  orcidid: 0000-0002-2897-665X
  surname: Wang
  fullname: Wang, Jinsong
  email: jswang512@kust.edu.cn
  organization: Nankai University
– sequence: 10
  givenname: Tianyi
  orcidid: 0000-0002-1042-8700
  surname: Ma
  fullname: Ma, Tianyi
  email: tianyi.ma@rmit.edu.au
  organization: RMIT University
BookMark eNo9kDtPwzAUhS1UJNrCymyJBYa0fuQ5VqWhSK26gGCLHPumdZXaxUmAbuws_EZ-CYmKOt17pXO_o3MGqGesAYSuKRlRQthYqGI3YoRxEjCfn6E-DWnoccLi3mmnrxdoUFVbQmgUcb-Pvqe22ZfarPFEVdbloPDs3ZZNra3Bwii8EHWtJeDV52ENBi9BboTR1Q5rg1P4_fqZ2tvV_I6NU2ArjudQg7NV7RpZNw5wYR2emfZFduQSZO2s3MBOS1HiF9GKW7JWovO7ROeFKCu4-p9D9JzOnqZzb7F6eJxOFt6eRZx7fqFA5gqEDKKAxm1YGUUJhYiy3JcQEL-gwGOZJBDleeCrkAqmSAyUUcpYwofo5sjdO_vWQFVnW9s401pmLG55lPih36qSo-pDl3DI9k7vhDtklGRd21nXdnZqO5vcp8vTxf8A6155Kg
ContentType Journal Article
Copyright 2023 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH
2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH
– notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202305243
DatabaseName Wiley Online Library Open Access
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID ADFM202305243
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 52101258
– fundername: Yunnan Fundamental Research Projects
  funderid: 202301AT070426; 202101BE070001‐042; 202101AU070028
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
7SP
7SR
7U5
8BQ
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-p2733-4fdecbdeac57518524c7791e712b4ce504f1e38c99e7bb54d61a2d08e12112293
IEDL.DBID DRFUL
ISICitedReferencesCount 173
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001059827500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1616-301X
IngestDate Mon Jul 14 10:25:18 EDT 2025
Wed Jan 22 16:17:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 45
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2733-4fdecbdeac57518524c7791e712b4ce504f1e38c99e7bb54d61a2d08e12112293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2897-665X
0000-0002-1042-8700
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202305243
PQID 2885210464
PQPubID 2045204
PageCount 10
ParticipantIDs proquest_journals_2885210464
wiley_primary_10_1002_adfm_202305243_ADFM202305243
PublicationCentury 2000
PublicationDate November 2, 2023
PublicationDateYYYYMMDD 2023-11-02
PublicationDate_xml – month: 11
  year: 2023
  text: November 2, 2023
  day: 02
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2023; 76
2023; 35
2023; 14
2019; 3
2019; 31
2023; 480
2019; 12
2019; 56
1974; 249
2020; 78
2020; 11
2023; 2
2021; 143
2021; 50
2012; 11
2021; 90
2021; 14
2020; 8
2018; 9
2018; 8
2016; 7
2021; 12
2021; 33
2020; 30
2022; 61
1993; 97
2022; 12
2022; 34
2016; 311
2022; 14
2022; 15
2022; 32
2022; 2
2017; 543
2016; 26
References_xml – volume: 78
  year: 2020
  publication-title: Nano Energy
– volume: 14
  start-page: 112
  year: 2022
  publication-title: Nano‐Micro Lett.
– volume: 14
  year: 2022
  publication-title: Nanoscale
– volume: 50
  start-page: 6700
  year: 2021
  publication-title: Chem. Soc. Rev.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 53
  year: 2023
  publication-title: J. Alloys Compd.
– volume: 11
  start-page: 4066
  year: 2020
  publication-title: Nat. Commun.
– volume: 26
  start-page: 3331
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 557
  year: 2019
  publication-title: Joule
– volume: 143
  start-page: 2217
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 56
  start-page: 109
  year: 2019
  publication-title: Nano Energy
– volume: 8
  start-page: 2001
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 2373
  year: 2018
  publication-title: Nat. Commun.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 76
  start-page: 195
  year: 2023
  publication-title: J. Energy Chem.
– volume: 90
  year: 2021
  publication-title: Nano Energy
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 249
  start-page: 724
  year: 1974
  publication-title: Nature
– volume: 7
  start-page: 4847
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 480
  year: 2023
  publication-title: Coord. Chem. Rev.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 14
  start-page: 4647
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 543
  start-page: 37
  year: 2017
  publication-title: Nature
– volume: 311
  start-page: 11
  year: 2016
  publication-title: J. Hazard. Mater.
– volume: 12
  start-page: 463
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 50
  year: 2021
  publication-title: Chem. Soc. Rev.
– volume: 2
  start-page: 84
  year: 2022
  publication-title: Nat. Rev. Methods Primers
– volume: 14
  start-page: 1873
  year: 2023
  publication-title: Nat. Commun.
– volume: 15
  start-page: 2952
  year: 2022
  publication-title: Nano Res.
– volume: 97
  year: 1993
  publication-title: J. Phys. Chem.
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 50
  start-page: 1354
  year: 2021
  publication-title: Chem. Soc. Rev.
– volume: 12
  year: 2022
  publication-title: ACS Catal.
– volume: 11
  start-page: 550
  year: 2012
  publication-title: Nat. Mater.
– volume: 12
  start-page: 3992
  year: 2021
  publication-title: Nat. Commun.
SSID ssj0017734
Score 2.705313
Snippet Oxygen evolution reaction (OER) remains a bottleneck for electrocatalytic water‐splitting to generate hydrogen. However, the traditional adsorbed evolution...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms adsorbed evolution mechanism
Cobalt
Coupling
Current density
Electrocatalysts
Heterostructures
Iron
lattice oxygen mechanism
Materials science
Oxidation
oxygen evolution reaction
Oxygen evolution reactions
Reaction kinetics
Stability
Water splitting
Title Coupling Adsorbed Evolution and Lattice Oxygen Mechanism in Fe‐Co(OH)2/Fe2O3 Heterostructure for Enhanced Electrochemical Water Oxidation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202305243
https://www.proquest.com/docview/2885210464
Volume 33
WOSCitedRecordID wos001059827500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1616-3028
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017734
  issn: 1616-301X
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWgMMDAN6J8VB4YYIiaOHYcj1XbqEOhFaKiWxTnHOhAUjWAYGNn4TfyS7CTtJQVtmSIk5zvnOfcvXcInQsmgbmcWgllkUWlzS3pgWsJgIQ5YIuEQNFsgl9f--OxGC6x-Et9iMUPNxMZxXptAjySefNHNDSCxDDJNYRmhLqraM0wq_T2a61zE4z6i0wC52Vm2XNMjZczngs32qT5e4RfEHMZqBZfmmD7_8-4g7YqlIlbpVvsohWV7qHNJe3BffTRzp4NG_cetyDPZlIB7r5UfoijFHA_ejKFcXjw-qadDF8pwxGe5I94kuJAfb1_trOLQe-SNANFBi7umbqarJSjfZ4prMEw7qYPRYEB7pbNduJKnQDfaYQ70yNPyo5OB2gUdG_bPavqzGBNNdxxLZqAiiXoRbtI2-iXizkXjuIOkTRWzKaJo1w_FkJxKRkFz4kI2L4ygnJEI4xDVEuzVB0hDMxLRMxspXEaFaB3f5RyDxzGCfXBJnV0Op-WsAqvPCS-vqfJTtM6IsUEhNNSnCMsZZhJaEwfLkwftjrB1eLs-C8XnaANc1zwEMkpqml7qjO0Hr88TfJZA60SOmxUzvcNj3na-Q
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT4QwEG50NVEPvo3rswcPeiALpaX0uFkha9yHB417I8AU5SBs2NXozbsXf6O_xBZw1avxCEkLTKftR-ebbxA6ESwCZnNqJJSFBo1MbkQO2IYASJgFpkgIlMUm-GDgjkbiqmYT6lyYSh9iduCmZ0a5XusJrg-kW9-qoSEkOpVcYWhGqD2PFqjamjSrj9CrWSCB8yqw7Fia4mWNvnQbTdL63f4XwvyJU8uNxl_7h1dcR6s1ysTtyi020JzMNtHKD-3BLfTWyR91Nu4dbsMkLyIJ2Huq_RCHGeBeONXEODx8flFOhvtS5winkwecZtiXH6_vnfx02D0jLV-SoY27mleTV3K0j4XECgxjL7svCQbYq4rtxLU6Ab5VCLdQPadVRadtdON7152uUVdmMMYK7tgGTUDGEahFuwzbqI-LOReW5BaJaCyZSRNL2m4shORRxCg4VkjAdKUWlCMKYeygRpZnchdhYE4iYmZKhdOoAPX3Ryl3wGKcUBdM0kQHX-MS1NNrEhBXPVNHp2kTkXIEgnElzhFUMswk0KYPZqYP2ud-f3a195dGx2ipe93vBb2LweU-Wtb3y5xEcoAayrbyEC3GT9N0UhyVHvgJfPXcdw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagIAQDb8QbDwwwRE0cO47Hqm1URF8DiG5RknOgA0nVAoKNnYXfyC_BdkJpV8SYSM7jfOd88X33HULngsXAXE6tlLLIorHNrdgD1xIAKXPAFikB02yCd7v-YCD6JZtQ18IU-hDTDTcdGWa91gEuR5BWf1VDI0h1KbnC0IxQdxEtUcZNbBLanyYSOC8Sy56jKV7O4Ee30SbV-fFzCHMWp5oPTbDxD4-4idZLlIlrhVtsoQWZbaO1Ge3BHfRRz591Ne49rsEkH8cScPOl9EMcZYDb0ZMmxuHe65tyMtyRukZ4OHnEwwwH8uv9s55f9FqXpBpI0nNxS_Nq8kKO9nkssQLDuJk9GIIBbhbNdpJSnQDfKYQ7VlceFh2ddtFt0Lypt6yyM4M1UnDHtWgKMolBLdombaNeLuFcOJI7JKaJZDZNHen6iRCSxzGj4DkRAduXWlCOKISxhypZnsl9hIF5qUiYLRVOowLU3x-l3AOHcUJ9sMkBOv6Zl7AMr0lIfHVPnZ2mB4iYGQhHhThHWMgwk1CbPpyaPqw1gs706PAvg87QSr8RhO2r7vURWtWnTUkiOUYVZVp5gpaTl6fhZHxqHPAbOrHb8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coupling+Adsorbed+Evolution+and+Lattice+Oxygen+Mechanism+in+Fe%E2%80%90Co%28OH%292%2FFe2O3+Heterostructure+for+Enhanced+Electrochemical+Water+Oxidation&rft.jtitle=Advanced+functional+materials&rft.au=Sisi+Xin&rft.au=Tang%2C+Yu&rft.au=Jia%2C+Baohua&rft.au=Zhang%2C+Zhengfu&rft.date=2023-11-02&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=45&rft_id=info:doi/10.1002%2Fadfm.202305243&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon