Coupling Adsorbed Evolution and Lattice Oxygen Mechanism in Fe‐Co(OH)2/Fe2O3 Heterostructure for Enhanced Electrochemical Water Oxidation

Oxygen evolution reaction (OER) remains a bottleneck for electrocatalytic water‐splitting to generate hydrogen. However, the traditional adsorbed evolution mechanism (AEM) possesses sluggish reaction kinetics due to the scaling relationship, while lattice oxygen mechanism (LOM) triggers an unstable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials Jg. 33; H. 45
Hauptverfasser: Xin, Sisi, Tang, Yu, Jia, Baohua, Zhang, Zhengfu, Li, Chengping, Bao, Rui, Li, Caiju, Yi, Jianhong, Wang, Jinsong, Ma, Tianyi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken Wiley Subscription Services, Inc 02.11.2023
Schlagworte:
ISSN:1616-301X, 1616-3028
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Oxygen evolution reaction (OER) remains a bottleneck for electrocatalytic water‐splitting to generate hydrogen. However, the traditional adsorbed evolution mechanism (AEM) possesses sluggish reaction kinetics due to the scaling relationship, while lattice oxygen mechanism (LOM) triggers an unstable structure due to the escaping of lattice oxygen. Herein, a proof‐of‐concept Fe‐Co(OH)2/Fe2O3 heterostructure is put forward, where Fe‐Co(OH)2 following AEM can complete rapidly deprotonation process while Fe2O3 following LOM can trigger O─O coupling step. Combining the theoretical and experimental investigation confirmed that the redistributed space‐charge of Fe‐Co(OH)2/Fe2O3 junction can optimize synergistically adsorbed and lattice oxygen, the coupling mechanism of AEM and LOM can facilitate synchronously the OER activity and stability. As a result, the Fe‐Co(OH)2/Fe2O3 heterostructure shows excellent OER performance with low overpotential of only 219 and 249 mV to reach a current density of 10 and 100 mA cm−2. Specifically, the Fe‐Co(OH)2/Fe2O3 electrocatalyst maintains excellent long‐term stability for 100 h at a large current density of 100 mA cm−2. This work paves an avenue to break through the limit of the conventional OER mechanism. A proof‐of‐concept Fe‐Co(OH)2/Fe2O3 heterostructure catalyst with high activity and stability is designed and fabricated. The coupling mechanism of AEM and LOM can break through the limit of the conventional OER mechanism to facilitate the OER activity and stability. This work offers a possible coupling mechanism for designing and explaining high‐performance OER electrocatalysts.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.202305243