Enhancing C─C Bond Cleavage of Glycerol Electrooxidation Through Spin‐Selective Electron Donation in Pd–PdS2–Cox Heterostructural Nanosheets

As a 4d transition metal, the spin state of Pd is extremely difficult to directly regulate for the optimized d orbital states owing to the strong spin‐orbit coupling effect and further extended d orbital. Herein, we devise a “spin‐selective electron donation” strategy to tune specific d orbital elec...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Angewandte Chemie International Edition Ročník 64; číslo 27; s. e202506032 - n/a
Hlavní autoři: Liu, Pei, Ma, Hao, Qin, Yuchen, Li, Junjun, Li, Fengwang, Ye, Jinyu, Guo, Qiudi, Su, Ning, Gao, Chao, Xie, Lixia, Sheng, Xia, Zhao, Shiju, Jiang, Guangce, Ren, Yunlai, Sun, Yuanmiao, Zhang, Zhicheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Weinheim Wiley Subscription Services, Inc 01.07.2025
Vydání:International ed. in English
Témata:
ISSN:1433-7851, 1521-3773, 1521-3773
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract As a 4d transition metal, the spin state of Pd is extremely difficult to directly regulate for the optimized d orbital states owing to the strong spin‐orbit coupling effect and further extended d orbital. Herein, we devise a “spin‐selective electron donation” strategy to tune specific d orbital electrons of Pd inspired by the Dewar−Chatt−Duncanson model theory. Co−S−Pd bridges with different spin‐states of CoIII have been constructed in a series of Pd–PdS2–Cox HNSs with tunable Co content. Experiments and theoretical calculations indicate that low‐spin CoIII (t2g6eg0) with fully occupied t2g orbitals and empty dz2$d_{{z^2}}$ orbitals can accurately alter the dz2$d_{{z^2}}$ electron of Pd by σ‐donation via the Co−S−Pd bridge. In contrast, the unfilled dxy orbital of high‐spin CoIII (t2g5eg1) is essential for controlling the dxy electron of Pd via π‐donation. Benefiting from dz2$d_{{z^2}}$ state optimization by σ‐donation, Pd–PdS2–Co4.0 delivers superior performance toward various bio‐alcohols (ethanol, ethylene glycol, and glycerol) with enhanced C─C bond cleavage. Furthermore, coupling the glycerol oxidation reaction with the CO2 reduction reaction (GOR||CO2RR), the electricity consumption of GOR||CO2RR drops 46.4% compared to the state‐of‐art system (OER||CO2RR). Moreover, anodic Faraday efficiency (FE) of formic acid can be attainable at more than 90% at low voltage regions. The “spin‐selective electron donation” strategy effectively modulates the electronic states of Pd's d orbitals (dz2${d_{{z^2}}}$ and dxy) through distinct pathway: σ‐donation from low‐spin CoIII (t2g6eg0) and π‐donation from high‐spin CoIII (t2g5eg1).
AbstractList As a 4d-transition metal, the spin state of Pd is extremely difficult to directly regulate for the optimized d orbital states owing to the strong spin-orbit coupling effect and further extended d orbital. Herein, we devise "spin-selective electron donation" strategy to tune specific d orbital electrons of Pd inspired by Dewar-Chatt-Duncanson model theory. Co-S-Pd bridges with different spin-states of CoIII have been constructed in a series of Pd-PdS2-Cox HNSs with tunable Co content. Experiments and theoretical calculations indicate that low-spin CoIII (t2g6eg0) with fully occupied t2g orbitals and empty dz2 orbital can accurately alter the dz2 electron of Pd by σ-donation via Co-S-Pd bridge. In contrast, unfilled dxy orbital of high-spin CoIII (t2g5eg1) is essential for controlling the dxy electron of Pd via π-donation. Benefiting from dz2 state optimization by σ-donation, Pd-PdS2-Co4.0 delivers superior performance towards various bio-alcohols (ethanol, ethylene glycol and glycerol) with enhanced C-C bond cleavage. Furthermore, coupling glycerol oxidation reaction with CO2 reduction reaction (GOR||CO2RR), the electricity consumption of GOR||CO2RR drops 46.4% compared to the state-of-art system (OER||CO2RR). Moreover, anodic Faraday efficiency (FE) of formic acid can be attainable more than 90% at low voltage region.As a 4d-transition metal, the spin state of Pd is extremely difficult to directly regulate for the optimized d orbital states owing to the strong spin-orbit coupling effect and further extended d orbital. Herein, we devise "spin-selective electron donation" strategy to tune specific d orbital electrons of Pd inspired by Dewar-Chatt-Duncanson model theory. Co-S-Pd bridges with different spin-states of CoIII have been constructed in a series of Pd-PdS2-Cox HNSs with tunable Co content. Experiments and theoretical calculations indicate that low-spin CoIII (t2g6eg0) with fully occupied t2g orbitals and empty dz2 orbital can accurately alter the dz2 electron of Pd by σ-donation via Co-S-Pd bridge. In contrast, unfilled dxy orbital of high-spin CoIII (t2g5eg1) is essential for controlling the dxy electron of Pd via π-donation. Benefiting from dz2 state optimization by σ-donation, Pd-PdS2-Co4.0 delivers superior performance towards various bio-alcohols (ethanol, ethylene glycol and glycerol) with enhanced C-C bond cleavage. Furthermore, coupling glycerol oxidation reaction with CO2 reduction reaction (GOR||CO2RR), the electricity consumption of GOR||CO2RR drops 46.4% compared to the state-of-art system (OER||CO2RR). Moreover, anodic Faraday efficiency (FE) of formic acid can be attainable more than 90% at low voltage region.
As a 4d transition metal, the spin state of Pd is extremely difficult to directly regulate for the optimized d orbital states owing to the strong spin‐orbit coupling effect and further extended d orbital. Herein, we devise a “spin‐selective electron donation” strategy to tune specific d orbital electrons of Pd inspired by the Dewar−Chatt−Duncanson model theory. Co−S−Pd bridges with different spin‐states of CoIII have been constructed in a series of Pd–PdS2–Cox HNSs with tunable Co content. Experiments and theoretical calculations indicate that low‐spin CoIII (t2g6eg0) with fully occupied t2g orbitals and empty dz2$d_{{z^2}}$ orbitals can accurately alter the dz2$d_{{z^2}}$ electron of Pd by σ‐donation via the Co−S−Pd bridge. In contrast, the unfilled dxy orbital of high‐spin CoIII (t2g5eg1) is essential for controlling the dxy electron of Pd via π‐donation. Benefiting from dz2$d_{{z^2}}$ state optimization by σ‐donation, Pd–PdS2–Co4.0 delivers superior performance toward various bio‐alcohols (ethanol, ethylene glycol, and glycerol) with enhanced C─C bond cleavage. Furthermore, coupling the glycerol oxidation reaction with the CO2 reduction reaction (GOR||CO2RR), the electricity consumption of GOR||CO2RR drops 46.4% compared to the state‐of‐art system (OER||CO2RR). Moreover, anodic Faraday efficiency (FE) of formic acid can be attainable at more than 90% at low voltage regions.
As a 4d transition metal, the spin state of Pd is extremely difficult to directly regulate for the optimized d orbital states owing to the strong spin‐orbit coupling effect and further extended d orbital. Herein, we devise a “spin‐selective electron donation” strategy to tune specific d orbital electrons of Pd inspired by the Dewar−Chatt−Duncanson model theory. Co−S−Pd bridges with different spin‐states of CoIII have been constructed in a series of Pd–PdS2–Cox HNSs with tunable Co content. Experiments and theoretical calculations indicate that low‐spin CoIII (t2g6eg0) with fully occupied t2g orbitals and empty dz2$d_{{z^2}}$ orbitals can accurately alter the dz2$d_{{z^2}}$ electron of Pd by σ‐donation via the Co−S−Pd bridge. In contrast, the unfilled dxy orbital of high‐spin CoIII (t2g5eg1) is essential for controlling the dxy electron of Pd via π‐donation. Benefiting from dz2$d_{{z^2}}$ state optimization by σ‐donation, Pd–PdS2–Co4.0 delivers superior performance toward various bio‐alcohols (ethanol, ethylene glycol, and glycerol) with enhanced C─C bond cleavage. Furthermore, coupling the glycerol oxidation reaction with the CO2 reduction reaction (GOR||CO2RR), the electricity consumption of GOR||CO2RR drops 46.4% compared to the state‐of‐art system (OER||CO2RR). Moreover, anodic Faraday efficiency (FE) of formic acid can be attainable at more than 90% at low voltage regions. The “spin‐selective electron donation” strategy effectively modulates the electronic states of Pd's d orbitals (dz2${d_{{z^2}}}$ and dxy) through distinct pathway: σ‐donation from low‐spin CoIII (t2g6eg0) and π‐donation from high‐spin CoIII (t2g5eg1).
Author Liu, Pei
Gao, Chao
Qin, Yuchen
Ma, Hao
Jiang, Guangce
Ren, Yunlai
Zhao, Shiju
Sheng, Xia
Li, Junjun
Sun, Yuanmiao
Zhang, Zhicheng
Guo, Qiudi
Ye, Jinyu
Li, Fengwang
Su, Ning
Xie, Lixia
Author_xml – sequence: 1
  givenname: Pei
  surname: Liu
  fullname: Liu, Pei
  organization: Henan Agricultural University
– sequence: 2
  givenname: Hao
  surname: Ma
  fullname: Ma, Hao
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Yuchen
  surname: Qin
  fullname: Qin, Yuchen
  email: qinyuchen@henau.edu.cn
  organization: Henan Agricultural University
– sequence: 4
  givenname: Junjun
  surname: Li
  fullname: Li, Junjun
  organization: Tianjin University
– sequence: 5
  givenname: Fengwang
  surname: Li
  fullname: Li, Fengwang
  organization: The University of Sydney
– sequence: 6
  givenname: Jinyu
  surname: Ye
  fullname: Ye, Jinyu
  organization: Xiamen University
– sequence: 7
  givenname: Qiudi
  surname: Guo
  fullname: Guo, Qiudi
  organization: Henan Agricultural University
– sequence: 8
  givenname: Ning
  surname: Su
  fullname: Su, Ning
  organization: Henan Agricultural University
– sequence: 9
  givenname: Chao
  surname: Gao
  fullname: Gao, Chao
  organization: Henan Agricultural University
– sequence: 10
  givenname: Lixia
  surname: Xie
  fullname: Xie, Lixia
  organization: Henan Agricultural University
– sequence: 11
  givenname: Xia
  surname: Sheng
  fullname: Sheng, Xia
  organization: Henan Agricultural University
– sequence: 12
  givenname: Shiju
  surname: Zhao
  fullname: Zhao, Shiju
  organization: Henan Agricultural University
– sequence: 13
  givenname: Guangce
  surname: Jiang
  fullname: Jiang, Guangce
  organization: Henan Agricultural University
– sequence: 14
  givenname: Yunlai
  surname: Ren
  fullname: Ren, Yunlai
  organization: Henan Agricultural University
– sequence: 15
  givenname: Yuanmiao
  surname: Sun
  fullname: Sun, Yuanmiao
  email: sunym@siat.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 16
  givenname: Zhicheng
  surname: Zhang
  fullname: Zhang, Zhicheng
  email: zczhang19@tju.edu.cn
  organization: Tianjin University
BookMark eNpd0c1uEzEQB3ALFYl-cOVsiQuXLf6Id-1jWUJbqWorpZytye5s4sq1g71bmlseAQm48yw8Sp6EjQI9cJoZ6ae_RvofkYMQAxLyhrNTzph4D8HhqWBCsZJJ8YIcciV4IatKHoz7RMqi0oq_Ikc5349ea1Yekp_TsITQuLCg9fbHpqYfYmhp7REeYYE0dvTcrxtM0dOpx6ZPMT65FnoXA71bpjgslnS2cmG7-TbDHXCP-E8G-jGGPXXh96_bdrv5ftvOxDjq-EQvsB9zc5-Gph8SeHoNIeYlYp9PyMsOfMbXf-cx-fxpeldfFFc355f12VWxEqUWBapSNR0IM8e2E6qdS9MAU7rlrDNa6a4EZkrOSqMYclPNoVMAUHUTNEwwkMfk3T53leKXAXNvH1xu0HsIGIdsJTeTUslKqJG-_Y_exyGF8TsrhRjjKq13yuzVV-dxbVfJPUBaW87sriK7q8g-V2TPri-nz5f8A81mj74
ContentType Journal Article
Copyright 2025 Wiley‐VCH GmbH
2025 Wiley‐VCH GmbH.
Copyright_xml – notice: 2025 Wiley‐VCH GmbH
– notice: 2025 Wiley‐VCH GmbH.
DBID 7TM
K9.
7X8
DOI 10.1002/anie.202506032
DatabaseName Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)

Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID ANIE202506032
Genre researchArticle
GrantInformation_xml – fundername: Henan Agricultural University
  funderid: 30500682
– fundername: Shenzhen Science and Technology Program
  funderid: KQTD20221101093647058
– fundername: China Postdoctoral Science Foundation
  funderid: 2023M743670
– fundername: 2022 Subsidized Project of Tianjin University Graduate Arts and Science Excellence Innovation
  funderid: B2‐2022‐002
– fundername: National Natural Science Foundation of China
  funderid: 22209039; 22071172; 22375142; 52373233
– fundername: Postdoctoral Fellowship Program of CPSF
  funderid: GZC20232867
– fundername: SIAT International Joint Lab
  funderid: E3G113
– fundername: Science and Technology, China National Petroleum Corporation
  funderid: 2022DQ02‐0408
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
7TM
ABUFD
K9.
7X8
ID FETCH-LOGICAL-p2682-e565cfa29bedf25db39ca058d10f9858f6a096106950e197baf5aaa7f4e9020a3
IEDL.DBID DRFUL
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001490073500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 18:30:13 EDT 2025
Thu Oct 16 01:23:57 EDT 2025
Mon Jun 30 09:44:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 27
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2682-e565cfa29bedf25db39ca058d10f9858f6a096106950e197baf5aaa7f4e9020a3
Notes Both authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 3229027885
PQPubID 946352
PageCount 10
ParticipantIDs proquest_miscellaneous_3194653725
proquest_journals_3229027885
wiley_primary_10_1002_anie_202506032_ANIE202506032
PublicationCentury 2000
PublicationDate July 1, 2025
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: July 1, 2025
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 334
2023; 13
2019; 4
2015; 6
2023; 14
2023; 120
2023; 4
2023; 18
2023; 5
2023; 15
2021; 125
2023; 145
2024; 383
2024; 121
2017; 29
2022; 21
2024; 146
2024; 15
2019; 141
2014; 136
2017; 358
2016; 12
2022; 144
2016; 6
2021; 33
2022; 61
2022; 5
2021; 412
1997; 30
2022; 12
2022; 13
2024; 63
2013; 135
2024; 67
2022; 10
2021; 60
2025; 64
2010; 4
2010; 93
References_xml – volume: 334
  start-page: 1383
  year: 2011
  end-page: 1385
  publication-title: Science
– volume: 18
  start-page: 763
  year: 2023
  end-page: 771
  publication-title: Nat. Nanotechnol.
– volume: 13
  start-page: 2382
  year: 2022
  publication-title: Nat. Commun.
– volume: 64
  year: 2025
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  start-page: 7686
  year: 2016
  end-page: 7695
  publication-title: ACS Catal.
– volume: 6
  start-page: 6593
  year: 2015
  publication-title: Nat. Commun.
– volume: 412
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 121
  year: 2024
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 12
  start-page: 37
  year: 2016
  end-page: 41
  publication-title: Nat. Physics
– volume: 60
  start-page: 3148
  year: 2021
  end-page: 3155
  publication-title: Angew. Chem., Int. Ed.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 21
  start-page: 664
  year: 2022
  end-page: 672
  publication-title: Nat. Mater.
– volume: 15
  start-page: 190
  year: 2023
  publication-title: Nano‐Micro Lett.
– volume: 141
  start-page: 9629
  year: 2019
  end-page: 9636
  publication-title: J. Am. Chem. Soc.
– volume: 146
  start-page: 3241
  year: 2024
  end-page: 3249
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 4894
  year: 2016
  end-page: 4906
  publication-title: ACS Catal.
– volume: 144
  start-page: 8204
  year: 2022
  end-page: 8213
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 466
  year: 2019
  end-page: 474
  publication-title: Nat. Energy
– volume: 5
  start-page: 1827
  year: 2023
  end-page: 1840
  publication-title: CCS Chem.
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 135
  start-page: 16507
  year: 2013
  end-page: 16516
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 95
  year: 2022
  publication-title: Commun. Phys.
– volume: 146
  start-page: 6422
  year: 2024
  end-page: 6437
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 1309
  year: 2022
  end-page: 1319
  publication-title: J. Mater. Chem. A
– volume: 145
  start-page: 26699
  year: 2023
  end-page: 26710
  publication-title: J. Am. Chem. Soc.
– volume: 93
  start-page: 354
  year: 2010
  end-page: 362
  publication-title: Appl. Catal. B‐environ
– volume: 15
  start-page: 14433
  year: 2023
  end-page: 14446
  publication-title: ACS Appl. Mater. Interfaces
– volume: 383
  start-page: 1357
  year: 2024
  end-page: 1363
  publication-title: Science
– volume: 120
  year: 2023
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 4
  year: 2023
  publication-title: SmartMat.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 125
  start-page: 7956
  year: 2021
  end-page: 7966
  publication-title: J. Phys. Chem. A
– volume: 12
  start-page: 6722
  year: 2022
  end-page: 6728
  publication-title: ACS Catal.
– volume: 14
  start-page: 2040
  year: 2023
  publication-title: Nat. Commun.
– volume: 15
  start-page: 2420
  year: 2024
  publication-title: Nat. Commun.
– volume: 358
  start-page: 751
  year: 2017
  end-page: 756
  publication-title: Science
– volume: 67
  start-page: 696
  year: 2024
  end-page: 704
  publication-title: Sci. China Chem.
– volume: 144
  start-page: 7224
  year: 2022
  end-page: 7235
  publication-title: J. Am. Chem. Soc.
– volume: 30
  start-page: 1
  year: 1997
  end-page: 152
  publication-title: Surf. Sci. Rep.
– volume: 4
  start-page: 547
  year: 2010
  end-page: 555
  publication-title: ACS Nano
– volume: 63
  year: 2024
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  start-page: 3456
  year: 2023
  end-page: 3462
  publication-title: ACS Catal.
– volume: 136
  start-page: 3937
  year: 2014
  end-page: 3945
  publication-title: J. Am. Chem. Soc.
SSID ssj0028806
Score 2.4899986
Snippet As a 4d transition metal, the spin state of Pd is extremely difficult to directly regulate for the optimized d orbital states owing to the strong spin‐orbit...
As a 4d-transition metal, the spin state of Pd is extremely difficult to directly regulate for the optimized d orbital states owing to the strong spin-orbit...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e202506032
SubjectTerms Alcohols
Carbon dioxide
Chemical bonds
Chemical reduction
Cleavage
Cobalt
Coupling
C─C bond cleavage
Electricity consumption
Electron spin
Electrons
Ethanol
Ethylene glycol
Formic acid
Glycerol
Glycerol oxidation reaction
Low voltage
Orbitals
Oxidation
Palladium
Pd–PdS2–Co heterostructural nanosheets
Spin state regulation
Spin‐selective electron donation
Transition metals
Title Enhancing C─C Bond Cleavage of Glycerol Electrooxidation Through Spin‐Selective Electron Donation in Pd–PdS2–Cox Heterostructural Nanosheets
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202506032
https://www.proquest.com/docview/3229027885
https://www.proquest.com/docview/3194653725
Volume 64
WOSCitedRecordID wos001490073500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-3773
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028806
  issn: 1433-7851
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSsMwFA46Bb3xX_wngrfFLm3a5FLqpoKM4VR2V9I20cFIh1XRuz2CoN77LD7KnsSTZqt6q1dt6WkJOSen30mT70PogPqBy1kgHXC4cvyE-w4PmOcIruop5TIlJU_39XnYarFul7d_7OK3_BDVhJsZGWW-NgNcJMXhN2mo2YEN9R0xDHkeJOEZAsFLa2jm-KJ5dV4VXRCfdoeR5zlGiH5C3OiSw99v-AUxfwLV8kvTXPx_G5fQwhhl4iMbFstoSuoVNBdNxN1W0XtD3xqmDX2Do9HbMMJGXhhHfSkeIcHgXOGT_nMq7_I-blihnPypZ-WX8KWV9sGdQU-Phi-dUkkHkubEUmMz4Vya9vTnRzsbDV_bWYfAIcqf8KlZgJNb3lrD-YEhwefFrZT3xRq6ajYuo1NnrNDgDEgA0FwCHEyVIDyRmSI0SzyeCpeyrO4qzihTgTCSMm7AqSvrPEyEokKIUPmSA04V3jqq6VzLDYR5AIHCaEY9X_opJIYkc13hJ0pxQHQs2UQ7E_fE42FWxJ5hqydQxdNNtF_dhq40fz2ElvkD2NS54ZALCdiQ0lnxwBJ5xJaymcTGTXHlpvioddaorrb-8tA2mjfndlnvDqpBl8pdNJs-3veKuz00HXbZ3jhQvwC0su8B
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTuMwELZWsBJcWH4Fu_wYiWtE6sRpfEShpYhSVbQgbpGT2LRS5VSUReytj7DSLneehUfpkzATp2G5oj1FSSaR5RlPPk_s7yPkiPuBK8JAOeBw7fiJ8B0RhJ4jha6lXKiUFTzdN-16pxPe3opuuZoQ98JYfoiq4IYjo8jXOMCxIH38zhqKW7BhgseQIs-DLLzoQyxBkC-eXjWv29WsCwLUbjHyPAeV6OfMjS47_viGDxjzX6RafGqa3_5DI1fJSokz6YkNjDXyRZl1shTN5d02yHPDDJBrw9zRaPZ3GlEUGKbRSMlHSDE01_Rs9CtV9_mINqxUTv40tAJMtG_FfWhvPDSz6e9eoaUDaXNuaSiWnAvToXl96Waz6Z9u1mNwiPIn2sIlOLllrkXWDwopPp8MlHqYbJLrZqMftZxSo8EZswDAuQJAmGrJRKIyzXiWeCKVLg-zmqtFyEMdSBSVcQPBXVUT9URqLqWsa18JQKrS2yILJjdqm1ARQKiEPOOer_wUUkOSua70E60FYLow2SG7c__E5UCbxB7y1TOYx_Mdcljdhq7E_x7SqPwn2NQEssjVGdiwwlvx2FJ5xJa0mcXoprhyU3zSOW9UZ98_89ABWWr1L9tx-7xz8YMs43W7yHeXLED3qj3yNX18GE7u98t4fQNZAvIJ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BT9swFLZQmWAXNjamFcowEteI1InT-IjSFhBVVVFA3CInsaFS5VS0Q3DrT0AC7vst-yn9JXsvTrNxnThFSV4iy-_55XuO_X2EHHA_cEUYKAccrh0_Eb4jgtBzpNDNlAuVsoKn-6rX6vfD62sxKFcT4l4Yyw9RTbjhyCjyNQ5wNcn04V_WUNyCDQUeQ4o8D7Lwqo9KMjWy2j7vXvaqqgsC1G4x8jwHleiXzI0uO3z7hjcY81-kWnxqup_eoZGfyUaJM-mRDYxNsqLMF7IeLeXdvpLXjrlFrg1zQ6PFyzyiKDBMo7GS95BiaK7p8fgxVXf5mHasVE7-MLICTPTCivvQ4WRkFvOnYaGlA2lzaWkoTjkXpiPz-9cgW8yfB9mQwSHKH-gJLsHJLXMtsn5QSPH59Fap2XSLXHY7F9GJU2o0OBMWADhXAAhTLZlIVKYZzxJPpNLlYdZ0tQh5qAOJojJuILirmqKVSM2llC3tKwFIVXrfSM3kRn0nVAQQKiHPuOcrP4XUkGSuK_1EawGYLkzqpLH0T1wOtGnsIV89gzqe18l-dRu6Ev97SKPyn2DTFMgi12JgwwpvxRNL5RFb0mYWo5viyk3xUf-0U51t_89De2Rt0O7GvdP-2Q75iJftGt8GqUHvql3yIb2fjaZ3P8pw_QP5rPGE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+C%E2%94%80C+Bond+Cleavage+of+Glycerol+Electrooxidation+Through+Spin%E2%80%90Selective+Electron+Donation+in+Pd%E2%80%93PdS2%E2%80%93Cox+Heterostructural+Nanosheets&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Liu%2C+Pei&rft.au=Ma%2C+Hao&rft.au=Qin%2C+Yuchen&rft.au=Li%2C+Junjun&rft.date=2025-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=64&rft.issue=27&rft_id=info:doi/10.1002%2Fanie.202506032&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon