Enhancing C─C Bond Cleavage of Glycerol Electrooxidation Through Spin‐Selective Electron Donation in Pd–PdS2–Cox Heterostructural Nanosheets
As a 4d transition metal, the spin state of Pd is extremely difficult to directly regulate for the optimized d orbital states owing to the strong spin‐orbit coupling effect and further extended d orbital. Herein, we devise a “spin‐selective electron donation” strategy to tune specific d orbital elec...
Uloženo v:
| Vydáno v: | Angewandte Chemie International Edition Ročník 64; číslo 27; s. e202506032 - n/a |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Weinheim
Wiley Subscription Services, Inc
01.07.2025
|
| Vydání: | International ed. in English |
| Témata: | |
| ISSN: | 1433-7851, 1521-3773, 1521-3773 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | As a 4d transition metal, the spin state of Pd is extremely difficult to directly regulate for the optimized d orbital states owing to the strong spin‐orbit coupling effect and further extended d orbital. Herein, we devise a “spin‐selective electron donation” strategy to tune specific d orbital electrons of Pd inspired by the Dewar−Chatt−Duncanson model theory. Co−S−Pd bridges with different spin‐states of CoIII have been constructed in a series of Pd–PdS2–Cox HNSs with tunable Co content. Experiments and theoretical calculations indicate that low‐spin CoIII (t2g6eg0) with fully occupied t2g orbitals and empty dz2$d_{{z^2}}$ orbitals can accurately alter the dz2$d_{{z^2}}$ electron of Pd by σ‐donation via the Co−S−Pd bridge. In contrast, the unfilled dxy orbital of high‐spin CoIII (t2g5eg1) is essential for controlling the dxy electron of Pd via π‐donation. Benefiting from dz2$d_{{z^2}}$ state optimization by σ‐donation, Pd–PdS2–Co4.0 delivers superior performance toward various bio‐alcohols (ethanol, ethylene glycol, and glycerol) with enhanced C─C bond cleavage. Furthermore, coupling the glycerol oxidation reaction with the CO2 reduction reaction (GOR||CO2RR), the electricity consumption of GOR||CO2RR drops 46.4% compared to the state‐of‐art system (OER||CO2RR). Moreover, anodic Faraday efficiency (FE) of formic acid can be attainable at more than 90% at low voltage regions.
The “spin‐selective electron donation” strategy effectively modulates the electronic states of Pd's d orbitals (dz2${d_{{z^2}}}$ and dxy) through distinct pathway: σ‐donation from low‐spin CoIII (t2g6eg0) and π‐donation from high‐spin CoIII (t2g5eg1). |
|---|---|
| AbstractList | As a 4d-transition metal, the spin state of Pd is extremely difficult to directly regulate for the optimized d orbital states owing to the strong spin-orbit coupling effect and further extended d orbital. Herein, we devise "spin-selective electron donation" strategy to tune specific d orbital electrons of Pd inspired by Dewar-Chatt-Duncanson model theory. Co-S-Pd bridges with different spin-states of CoIII have been constructed in a series of Pd-PdS2-Cox HNSs with tunable Co content. Experiments and theoretical calculations indicate that low-spin CoIII (t2g6eg0) with fully occupied t2g orbitals and empty dz2 orbital can accurately alter the dz2 electron of Pd by σ-donation via Co-S-Pd bridge. In contrast, unfilled dxy orbital of high-spin CoIII (t2g5eg1) is essential for controlling the dxy electron of Pd via π-donation. Benefiting from dz2 state optimization by σ-donation, Pd-PdS2-Co4.0 delivers superior performance towards various bio-alcohols (ethanol, ethylene glycol and glycerol) with enhanced C-C bond cleavage. Furthermore, coupling glycerol oxidation reaction with CO2 reduction reaction (GOR||CO2RR), the electricity consumption of GOR||CO2RR drops 46.4% compared to the state-of-art system (OER||CO2RR). Moreover, anodic Faraday efficiency (FE) of formic acid can be attainable more than 90% at low voltage region.As a 4d-transition metal, the spin state of Pd is extremely difficult to directly regulate for the optimized d orbital states owing to the strong spin-orbit coupling effect and further extended d orbital. Herein, we devise "spin-selective electron donation" strategy to tune specific d orbital electrons of Pd inspired by Dewar-Chatt-Duncanson model theory. Co-S-Pd bridges with different spin-states of CoIII have been constructed in a series of Pd-PdS2-Cox HNSs with tunable Co content. Experiments and theoretical calculations indicate that low-spin CoIII (t2g6eg0) with fully occupied t2g orbitals and empty dz2 orbital can accurately alter the dz2 electron of Pd by σ-donation via Co-S-Pd bridge. In contrast, unfilled dxy orbital of high-spin CoIII (t2g5eg1) is essential for controlling the dxy electron of Pd via π-donation. Benefiting from dz2 state optimization by σ-donation, Pd-PdS2-Co4.0 delivers superior performance towards various bio-alcohols (ethanol, ethylene glycol and glycerol) with enhanced C-C bond cleavage. Furthermore, coupling glycerol oxidation reaction with CO2 reduction reaction (GOR||CO2RR), the electricity consumption of GOR||CO2RR drops 46.4% compared to the state-of-art system (OER||CO2RR). Moreover, anodic Faraday efficiency (FE) of formic acid can be attainable more than 90% at low voltage region. As a 4d transition metal, the spin state of Pd is extremely difficult to directly regulate for the optimized d orbital states owing to the strong spin‐orbit coupling effect and further extended d orbital. Herein, we devise a “spin‐selective electron donation” strategy to tune specific d orbital electrons of Pd inspired by the Dewar−Chatt−Duncanson model theory. Co−S−Pd bridges with different spin‐states of CoIII have been constructed in a series of Pd–PdS2–Cox HNSs with tunable Co content. Experiments and theoretical calculations indicate that low‐spin CoIII (t2g6eg0) with fully occupied t2g orbitals and empty dz2$d_{{z^2}}$ orbitals can accurately alter the dz2$d_{{z^2}}$ electron of Pd by σ‐donation via the Co−S−Pd bridge. In contrast, the unfilled dxy orbital of high‐spin CoIII (t2g5eg1) is essential for controlling the dxy electron of Pd via π‐donation. Benefiting from dz2$d_{{z^2}}$ state optimization by σ‐donation, Pd–PdS2–Co4.0 delivers superior performance toward various bio‐alcohols (ethanol, ethylene glycol, and glycerol) with enhanced C─C bond cleavage. Furthermore, coupling the glycerol oxidation reaction with the CO2 reduction reaction (GOR||CO2RR), the electricity consumption of GOR||CO2RR drops 46.4% compared to the state‐of‐art system (OER||CO2RR). Moreover, anodic Faraday efficiency (FE) of formic acid can be attainable at more than 90% at low voltage regions. As a 4d transition metal, the spin state of Pd is extremely difficult to directly regulate for the optimized d orbital states owing to the strong spin‐orbit coupling effect and further extended d orbital. Herein, we devise a “spin‐selective electron donation” strategy to tune specific d orbital electrons of Pd inspired by the Dewar−Chatt−Duncanson model theory. Co−S−Pd bridges with different spin‐states of CoIII have been constructed in a series of Pd–PdS2–Cox HNSs with tunable Co content. Experiments and theoretical calculations indicate that low‐spin CoIII (t2g6eg0) with fully occupied t2g orbitals and empty dz2$d_{{z^2}}$ orbitals can accurately alter the dz2$d_{{z^2}}$ electron of Pd by σ‐donation via the Co−S−Pd bridge. In contrast, the unfilled dxy orbital of high‐spin CoIII (t2g5eg1) is essential for controlling the dxy electron of Pd via π‐donation. Benefiting from dz2$d_{{z^2}}$ state optimization by σ‐donation, Pd–PdS2–Co4.0 delivers superior performance toward various bio‐alcohols (ethanol, ethylene glycol, and glycerol) with enhanced C─C bond cleavage. Furthermore, coupling the glycerol oxidation reaction with the CO2 reduction reaction (GOR||CO2RR), the electricity consumption of GOR||CO2RR drops 46.4% compared to the state‐of‐art system (OER||CO2RR). Moreover, anodic Faraday efficiency (FE) of formic acid can be attainable at more than 90% at low voltage regions. The “spin‐selective electron donation” strategy effectively modulates the electronic states of Pd's d orbitals (dz2${d_{{z^2}}}$ and dxy) through distinct pathway: σ‐donation from low‐spin CoIII (t2g6eg0) and π‐donation from high‐spin CoIII (t2g5eg1). |
| Author | Liu, Pei Gao, Chao Qin, Yuchen Ma, Hao Jiang, Guangce Ren, Yunlai Zhao, Shiju Sheng, Xia Li, Junjun Sun, Yuanmiao Zhang, Zhicheng Guo, Qiudi Ye, Jinyu Li, Fengwang Su, Ning Xie, Lixia |
| Author_xml | – sequence: 1 givenname: Pei surname: Liu fullname: Liu, Pei organization: Henan Agricultural University – sequence: 2 givenname: Hao surname: Ma fullname: Ma, Hao organization: Chinese Academy of Sciences – sequence: 3 givenname: Yuchen surname: Qin fullname: Qin, Yuchen email: qinyuchen@henau.edu.cn organization: Henan Agricultural University – sequence: 4 givenname: Junjun surname: Li fullname: Li, Junjun organization: Tianjin University – sequence: 5 givenname: Fengwang surname: Li fullname: Li, Fengwang organization: The University of Sydney – sequence: 6 givenname: Jinyu surname: Ye fullname: Ye, Jinyu organization: Xiamen University – sequence: 7 givenname: Qiudi surname: Guo fullname: Guo, Qiudi organization: Henan Agricultural University – sequence: 8 givenname: Ning surname: Su fullname: Su, Ning organization: Henan Agricultural University – sequence: 9 givenname: Chao surname: Gao fullname: Gao, Chao organization: Henan Agricultural University – sequence: 10 givenname: Lixia surname: Xie fullname: Xie, Lixia organization: Henan Agricultural University – sequence: 11 givenname: Xia surname: Sheng fullname: Sheng, Xia organization: Henan Agricultural University – sequence: 12 givenname: Shiju surname: Zhao fullname: Zhao, Shiju organization: Henan Agricultural University – sequence: 13 givenname: Guangce surname: Jiang fullname: Jiang, Guangce organization: Henan Agricultural University – sequence: 14 givenname: Yunlai surname: Ren fullname: Ren, Yunlai organization: Henan Agricultural University – sequence: 15 givenname: Yuanmiao surname: Sun fullname: Sun, Yuanmiao email: sunym@siat.ac.cn organization: Chinese Academy of Sciences – sequence: 16 givenname: Zhicheng surname: Zhang fullname: Zhang, Zhicheng email: zczhang19@tju.edu.cn organization: Tianjin University |
| BookMark | eNpd0c1uEzEQB3ALFYl-cOVsiQuXLf6Id-1jWUJbqWorpZytye5s4sq1g71bmlseAQm48yw8Sp6EjQI9cJoZ6ae_RvofkYMQAxLyhrNTzph4D8HhqWBCsZJJ8YIcciV4IatKHoz7RMqi0oq_Ikc5349ea1Yekp_TsITQuLCg9fbHpqYfYmhp7REeYYE0dvTcrxtM0dOpx6ZPMT65FnoXA71bpjgslnS2cmG7-TbDHXCP-E8G-jGGPXXh96_bdrv5ftvOxDjq-EQvsB9zc5-Gph8SeHoNIeYlYp9PyMsOfMbXf-cx-fxpeldfFFc355f12VWxEqUWBapSNR0IM8e2E6qdS9MAU7rlrDNa6a4EZkrOSqMYclPNoVMAUHUTNEwwkMfk3T53leKXAXNvH1xu0HsIGIdsJTeTUslKqJG-_Y_exyGF8TsrhRjjKq13yuzVV-dxbVfJPUBaW87sriK7q8g-V2TPri-nz5f8A81mj74 |
| ContentType | Journal Article |
| Copyright | 2025 Wiley‐VCH GmbH 2025 Wiley‐VCH GmbH. |
| Copyright_xml | – notice: 2025 Wiley‐VCH GmbH – notice: 2025 Wiley‐VCH GmbH. |
| DBID | 7TM K9. 7X8 |
| DOI | 10.1002/anie.202506032 |
| DatabaseName | Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitle | ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1521-3773 |
| Edition | International ed. in English |
| EndPage | n/a |
| ExternalDocumentID | ANIE202506032 |
| Genre | researchArticle |
| GrantInformation_xml | – fundername: Henan Agricultural University funderid: 30500682 – fundername: Shenzhen Science and Technology Program funderid: KQTD20221101093647058 – fundername: China Postdoctoral Science Foundation funderid: 2023M743670 – fundername: 2022 Subsidized Project of Tianjin University Graduate Arts and Science Excellence Innovation funderid: B2‐2022‐002 – fundername: National Natural Science Foundation of China funderid: 22209039; 22071172; 22375142; 52373233 – fundername: Postdoctoral Fellowship Program of CPSF funderid: GZC20232867 – fundername: SIAT International Joint Lab funderid: E3G113 – fundername: Science and Technology, China National Petroleum Corporation funderid: 2022DQ02‐0408 |
| GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT 7TM ABUFD K9. 7X8 |
| ID | FETCH-LOGICAL-p2682-e565cfa29bedf25db39ca058d10f9858f6a096106950e197baf5aaa7f4e9020a3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001490073500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1433-7851 1521-3773 |
| IngestDate | Fri Jul 11 18:30:13 EDT 2025 Thu Oct 16 01:23:57 EDT 2025 Mon Jun 30 09:44:25 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 27 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-p2682-e565cfa29bedf25db39ca058d10f9858f6a096106950e197baf5aaa7f4e9020a3 |
| Notes | Both authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 3229027885 |
| PQPubID | 946352 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_3194653725 proquest_journals_3229027885 wiley_primary_10_1002_anie_202506032_ANIE202506032 |
| PublicationCentury | 2000 |
| PublicationDate | July 1, 2025 |
| PublicationDateYYYYMMDD | 2025-07-01 |
| PublicationDate_xml | – month: 07 year: 2025 text: July 1, 2025 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim |
| PublicationTitle | Angewandte Chemie International Edition |
| PublicationYear | 2025 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2011; 334 2023; 13 2019; 4 2015; 6 2023; 14 2023; 120 2023; 4 2023; 18 2023; 5 2023; 15 2021; 125 2023; 145 2024; 383 2024; 121 2017; 29 2022; 21 2024; 146 2024; 15 2019; 141 2014; 136 2017; 358 2016; 12 2022; 144 2016; 6 2021; 33 2022; 61 2022; 5 2021; 412 1997; 30 2022; 12 2022; 13 2024; 63 2013; 135 2024; 67 2022; 10 2021; 60 2025; 64 2010; 4 2010; 93 |
| References_xml | – volume: 334 start-page: 1383 year: 2011 end-page: 1385 publication-title: Science – volume: 18 start-page: 763 year: 2023 end-page: 771 publication-title: Nat. Nanotechnol. – volume: 13 start-page: 2382 year: 2022 publication-title: Nat. Commun. – volume: 64 year: 2025 publication-title: Angew. Chem., Int. Ed. – volume: 6 start-page: 7686 year: 2016 end-page: 7695 publication-title: ACS Catal. – volume: 6 start-page: 6593 year: 2015 publication-title: Nat. Commun. – volume: 412 year: 2021 publication-title: Chem. Eng. J. – volume: 121 year: 2024 publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 12 start-page: 37 year: 2016 end-page: 41 publication-title: Nat. Physics – volume: 60 start-page: 3148 year: 2021 end-page: 3155 publication-title: Angew. Chem., Int. Ed. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 21 start-page: 664 year: 2022 end-page: 672 publication-title: Nat. Mater. – volume: 15 start-page: 190 year: 2023 publication-title: Nano‐Micro Lett. – volume: 141 start-page: 9629 year: 2019 end-page: 9636 publication-title: J. Am. Chem. Soc. – volume: 146 start-page: 3241 year: 2024 end-page: 3249 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 4894 year: 2016 end-page: 4906 publication-title: ACS Catal. – volume: 144 start-page: 8204 year: 2022 end-page: 8213 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 466 year: 2019 end-page: 474 publication-title: Nat. Energy – volume: 5 start-page: 1827 year: 2023 end-page: 1840 publication-title: CCS Chem. – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 135 start-page: 16507 year: 2013 end-page: 16516 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 95 year: 2022 publication-title: Commun. Phys. – volume: 146 start-page: 6422 year: 2024 end-page: 6437 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 1309 year: 2022 end-page: 1319 publication-title: J. Mater. Chem. A – volume: 145 start-page: 26699 year: 2023 end-page: 26710 publication-title: J. Am. Chem. Soc. – volume: 93 start-page: 354 year: 2010 end-page: 362 publication-title: Appl. Catal. B‐environ – volume: 15 start-page: 14433 year: 2023 end-page: 14446 publication-title: ACS Appl. Mater. Interfaces – volume: 383 start-page: 1357 year: 2024 end-page: 1363 publication-title: Science – volume: 120 year: 2023 publication-title: Proc. Natl. Acad. Sci. USA – volume: 4 year: 2023 publication-title: SmartMat. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 125 start-page: 7956 year: 2021 end-page: 7966 publication-title: J. Phys. Chem. A – volume: 12 start-page: 6722 year: 2022 end-page: 6728 publication-title: ACS Catal. – volume: 14 start-page: 2040 year: 2023 publication-title: Nat. Commun. – volume: 15 start-page: 2420 year: 2024 publication-title: Nat. Commun. – volume: 358 start-page: 751 year: 2017 end-page: 756 publication-title: Science – volume: 67 start-page: 696 year: 2024 end-page: 704 publication-title: Sci. China Chem. – volume: 144 start-page: 7224 year: 2022 end-page: 7235 publication-title: J. Am. Chem. Soc. – volume: 30 start-page: 1 year: 1997 end-page: 152 publication-title: Surf. Sci. Rep. – volume: 4 start-page: 547 year: 2010 end-page: 555 publication-title: ACS Nano – volume: 63 year: 2024 publication-title: Angew. Chem., Int. Ed. – volume: 13 start-page: 3456 year: 2023 end-page: 3462 publication-title: ACS Catal. – volume: 136 start-page: 3937 year: 2014 end-page: 3945 publication-title: J. Am. Chem. Soc. |
| SSID | ssj0028806 |
| Score | 2.4899986 |
| Snippet | As a 4d transition metal, the spin state of Pd is extremely difficult to directly regulate for the optimized d orbital states owing to the strong spin‐orbit... As a 4d-transition metal, the spin state of Pd is extremely difficult to directly regulate for the optimized d orbital states owing to the strong spin-orbit... |
| SourceID | proquest wiley |
| SourceType | Aggregation Database Publisher |
| StartPage | e202506032 |
| SubjectTerms | Alcohols Carbon dioxide Chemical bonds Chemical reduction Cleavage Cobalt Coupling C─C bond cleavage Electricity consumption Electron spin Electrons Ethanol Ethylene glycol Formic acid Glycerol Glycerol oxidation reaction Low voltage Orbitals Oxidation Palladium Pd–PdS2–Co heterostructural nanosheets Spin state regulation Spin‐selective electron donation Transition metals |
| Title | Enhancing C─C Bond Cleavage of Glycerol Electrooxidation Through Spin‐Selective Electron Donation in Pd–PdS2–Cox Heterostructural Nanosheets |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202506032 https://www.proquest.com/docview/3229027885 https://www.proquest.com/docview/3194653725 |
| Volume | 64 |
| WOSCitedRecordID | wos001490073500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-3773 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028806 issn: 1433-7851 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSsMwFA46Bb3xX_wngrfFLm3a5FLqpoKM4VR2V9I20cFIh1XRuz2CoN77LD7KnsSTZqt6q1dt6WkJOSen30mT70PogPqBy1kgHXC4cvyE-w4PmOcIruop5TIlJU_39XnYarFul7d_7OK3_BDVhJsZGWW-NgNcJMXhN2mo2YEN9R0xDHkeJOEZAsFLa2jm-KJ5dV4VXRCfdoeR5zlGiH5C3OiSw99v-AUxfwLV8kvTXPx_G5fQwhhl4iMbFstoSuoVNBdNxN1W0XtD3xqmDX2Do9HbMMJGXhhHfSkeIcHgXOGT_nMq7_I-blihnPypZ-WX8KWV9sGdQU-Phi-dUkkHkubEUmMz4Vya9vTnRzsbDV_bWYfAIcqf8KlZgJNb3lrD-YEhwefFrZT3xRq6ajYuo1NnrNDgDEgA0FwCHEyVIDyRmSI0SzyeCpeyrO4qzihTgTCSMm7AqSvrPEyEokKIUPmSA04V3jqq6VzLDYR5AIHCaEY9X_opJIYkc13hJ0pxQHQs2UQ7E_fE42FWxJ5hqydQxdNNtF_dhq40fz2ElvkD2NS54ZALCdiQ0lnxwBJ5xJaymcTGTXHlpvioddaorrb-8tA2mjfndlnvDqpBl8pdNJs-3veKuz00HXbZ3jhQvwC0su8B |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTuMwELZWsBJcWH4Fu_wYiWtE6sRpfEShpYhSVbQgbpGT2LRS5VSUReytj7DSLneehUfpkzATp2G5oj1FSSaR5RlPPk_s7yPkiPuBK8JAOeBw7fiJ8B0RhJ4jha6lXKiUFTzdN-16pxPe3opuuZoQ98JYfoiq4IYjo8jXOMCxIH38zhqKW7BhgseQIs-DLLzoQyxBkC-eXjWv29WsCwLUbjHyPAeV6OfMjS47_viGDxjzX6RafGqa3_5DI1fJSokz6YkNjDXyRZl1shTN5d02yHPDDJBrw9zRaPZ3GlEUGKbRSMlHSDE01_Rs9CtV9_mINqxUTv40tAJMtG_FfWhvPDSz6e9eoaUDaXNuaSiWnAvToXl96Waz6Z9u1mNwiPIn2sIlOLllrkXWDwopPp8MlHqYbJLrZqMftZxSo8EZswDAuQJAmGrJRKIyzXiWeCKVLg-zmqtFyEMdSBSVcQPBXVUT9URqLqWsa18JQKrS2yILJjdqm1ARQKiEPOOer_wUUkOSua70E60FYLow2SG7c__E5UCbxB7y1TOYx_Mdcljdhq7E_x7SqPwn2NQEssjVGdiwwlvx2FJ5xJa0mcXoprhyU3zSOW9UZ98_89ABWWr1L9tx-7xz8YMs43W7yHeXLED3qj3yNX18GE7u98t4fQNZAvIJ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BT9swFLZQmWAXNjamFcowEteI1InT-IjSFhBVVVFA3CInsaFS5VS0Q3DrT0AC7vst-yn9JXsvTrNxnThFSV4iy-_55XuO_X2EHHA_cEUYKAccrh0_Eb4jgtBzpNDNlAuVsoKn-6rX6vfD62sxKFcT4l4Yyw9RTbjhyCjyNQ5wNcn04V_WUNyCDQUeQ4o8D7Lwqo9KMjWy2j7vXvaqqgsC1G4x8jwHleiXzI0uO3z7hjcY81-kWnxqup_eoZGfyUaJM-mRDYxNsqLMF7IeLeXdvpLXjrlFrg1zQ6PFyzyiKDBMo7GS95BiaK7p8fgxVXf5mHasVE7-MLICTPTCivvQ4WRkFvOnYaGlA2lzaWkoTjkXpiPz-9cgW8yfB9mQwSHKH-gJLsHJLXMtsn5QSPH59Fap2XSLXHY7F9GJU2o0OBMWADhXAAhTLZlIVKYZzxJPpNLlYdZ0tQh5qAOJojJuILirmqKVSM2llC3tKwFIVXrfSM3kRn0nVAQQKiHPuOcrP4XUkGSuK_1EawGYLkzqpLH0T1wOtGnsIV89gzqe18l-dRu6Ev97SKPyn2DTFMgi12JgwwpvxRNL5RFb0mYWo5viyk3xUf-0U51t_89De2Rt0O7GvdP-2Q75iJftGt8GqUHvql3yIb2fjaZ3P8pw_QP5rPGE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+C%E2%94%80C+Bond+Cleavage+of+Glycerol+Electrooxidation+Through+Spin%E2%80%90Selective+Electron+Donation+in+Pd%E2%80%93PdS2%E2%80%93Cox+Heterostructural+Nanosheets&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Liu%2C+Pei&rft.au=Ma%2C+Hao&rft.au=Qin%2C+Yuchen&rft.au=Li%2C+Junjun&rft.date=2025-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=64&rft.issue=27&rft_id=info:doi/10.1002%2Fanie.202506032&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |