Enhancing C─C Bond Cleavage of Glycerol Electrooxidation Through Spin‐Selective Electron Donation in Pd–PdS2–Cox Heterostructural Nanosheets

As a 4d transition metal, the spin state of Pd is extremely difficult to directly regulate for the optimized d orbital states owing to the strong spin‐orbit coupling effect and further extended d orbital. Herein, we devise a “spin‐selective electron donation” strategy to tune specific d orbital elec...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Angewandte Chemie International Edition Ročník 64; číslo 27; s. e202506032 - n/a
Hlavní autoři: Liu, Pei, Ma, Hao, Qin, Yuchen, Li, Junjun, Li, Fengwang, Ye, Jinyu, Guo, Qiudi, Su, Ning, Gao, Chao, Xie, Lixia, Sheng, Xia, Zhao, Shiju, Jiang, Guangce, Ren, Yunlai, Sun, Yuanmiao, Zhang, Zhicheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Weinheim Wiley Subscription Services, Inc 01.07.2025
Vydání:International ed. in English
Témata:
ISSN:1433-7851, 1521-3773, 1521-3773
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:As a 4d transition metal, the spin state of Pd is extremely difficult to directly regulate for the optimized d orbital states owing to the strong spin‐orbit coupling effect and further extended d orbital. Herein, we devise a “spin‐selective electron donation” strategy to tune specific d orbital electrons of Pd inspired by the Dewar−Chatt−Duncanson model theory. Co−S−Pd bridges with different spin‐states of CoIII have been constructed in a series of Pd–PdS2–Cox HNSs with tunable Co content. Experiments and theoretical calculations indicate that low‐spin CoIII (t2g6eg0) with fully occupied t2g orbitals and empty dz2$d_{{z^2}}$ orbitals can accurately alter the dz2$d_{{z^2}}$ electron of Pd by σ‐donation via the Co−S−Pd bridge. In contrast, the unfilled dxy orbital of high‐spin CoIII (t2g5eg1) is essential for controlling the dxy electron of Pd via π‐donation. Benefiting from dz2$d_{{z^2}}$ state optimization by σ‐donation, Pd–PdS2–Co4.0 delivers superior performance toward various bio‐alcohols (ethanol, ethylene glycol, and glycerol) with enhanced C─C bond cleavage. Furthermore, coupling the glycerol oxidation reaction with the CO2 reduction reaction (GOR||CO2RR), the electricity consumption of GOR||CO2RR drops 46.4% compared to the state‐of‐art system (OER||CO2RR). Moreover, anodic Faraday efficiency (FE) of formic acid can be attainable at more than 90% at low voltage regions. The “spin‐selective electron donation” strategy effectively modulates the electronic states of Pd's d orbitals (dz2${d_{{z^2}}}$ and dxy) through distinct pathway: σ‐donation from low‐spin CoIII (t2g6eg0) and π‐donation from high‐spin CoIII (t2g5eg1).
Bibliografie:Both authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1433-7851
1521-3773
1521-3773
DOI:10.1002/anie.202506032