Hemisphere mass up to four-loops with generalised kt algorithms

We compute the fixed-order distribution of the non-global hemisphere mass observable in e + e - annihilation up to four loops for various sequential recombination jet algorithms. In particular, we focus on the k t and Cambridge/Aachen algorithms. Using eikonal theory and strong-energy ordering of th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The European physical journal. C, Particles and fields Ročník 85; číslo 8; s. 845
Hlavní autoři: Khelifa-Kerfa, Kamel, Benghanem, Mohamed
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 06.08.2025
Springer Nature B.V
Témata:
ISSN:1434-6044, 1434-6052
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We compute the fixed-order distribution of the non-global hemisphere mass observable in e + e - annihilation up to four loops for various sequential recombination jet algorithms. In particular, we focus on the k t and Cambridge/Aachen algorithms. Using eikonal theory and strong-energy ordering of the final-state partons, we determine the complete structure of both abelian (clustering) and non-abelian non-global logarithms through four loops in perturbation theory. We compare the resulting resummed expressions for both jet algorithms with the standard Sudakov form factor and demonstrate that neglecting these logarithms leads to unreliable phenomenological predictions for the observable’s distribution.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1434-6044
1434-6052
DOI:10.1140/epjc/s10052-025-14569-0