Hemisphere mass up to four-loops with generalised kt algorithms
We compute the fixed-order distribution of the non-global hemisphere mass observable in e + e - annihilation up to four loops for various sequential recombination jet algorithms. In particular, we focus on the k t and Cambridge/Aachen algorithms. Using eikonal theory and strong-energy ordering of th...
Uloženo v:
| Vydáno v: | The European physical journal. C, Particles and fields Ročník 85; číslo 8; s. 845 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
06.08.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 1434-6044, 1434-6052 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We compute the fixed-order distribution of the non-global hemisphere mass observable in
e
+
e
-
annihilation up to four loops for various sequential recombination jet algorithms. In particular, we focus on the
k
t
and Cambridge/Aachen algorithms. Using eikonal theory and strong-energy ordering of the final-state partons, we determine the complete structure of both abelian (clustering) and non-abelian non-global logarithms through four loops in perturbation theory. We compare the resulting resummed expressions for both jet algorithms with the standard Sudakov form factor and demonstrate that neglecting these logarithms leads to unreliable phenomenological predictions for the observable’s distribution. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1434-6044 1434-6052 |
| DOI: | 10.1140/epjc/s10052-025-14569-0 |