Neural Architecture Search with In‐Memory Multiply–Accumulate and In‐Memory Rank Based on Coating Layer Optimized C‐Doped Ge2Sb2Te5 Phase Change Memory

Neural architecture search (NAS), as a subfield of automated machine learning, can design neural network models with better performance than manual design. However, the energy and time consumptions of conventional software‐based NAS are huge, hindering its development and applications. Herein, 4 Mb...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advanced functional materials Ročník 34; číslo 15
Hlavní autori: Yan, Longhao, Wu, Qingyu, Li, Xi, Xie, Chenchen, Zhou, Xilin, Li, Yuqi, Shi, Daijing, Yu, Lianfeng, Zhang, Teng, Tao, Yaoyu, Yan, Bonan, Zhong, Min, Song, Zhitang, Yang, Yuchao, Huang, Ru
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hoboken Wiley Subscription Services, Inc 10.04.2024
Predmet:
ISSN:1616-301X, 1616-3028
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Neural architecture search (NAS), as a subfield of automated machine learning, can design neural network models with better performance than manual design. However, the energy and time consumptions of conventional software‐based NAS are huge, hindering its development and applications. Herein, 4 Mb phase change memory (PCM) chips are first fabricated that enable two key in‐memory computing operations—in‐memory multiply‐accumulate (MAC) and in‐memory rank for efficient NAS. The impacts of the coating layer material are systematically analyzed for the blade‐type heating electrode on the device uniformity and in turn NAS performance. The random weights in the searched network architecture can be fine‐tuned in the last stage. With 512 × 512 arrays based on 40 nm CMOS process, the PCM‐based NAS has achieved 25–53× smaller model size and better performance than manually designed networks and improved the energy and time efficiency by 4779× and 123×, respectively, compared with NAS running on graphic processing unit (GPU). This work can expand the hardware accelerated in‐memory operators, and significantly extend the applications of in‐memory computing enabled by nonvolatile memory in advanced machine learning tasks. Herein, 4 Mb phase change memory chips are first fabricated that enable two key in‐memory computing operations—in‐memory multiply accumulate (MAC) and in‐memory rank for efficient NAS. With 512 × 512 arrays the PCM‐based NAS has achieved 25–53× smaller model size and better performance than manually designed networks, and improved the energy and time efficiency by 4779× and 123×, respectively, compared with GPU.
AbstractList Neural architecture search (NAS), as a subfield of automated machine learning, can design neural network models with better performance than manual design. However, the energy and time consumptions of conventional software‐based NAS are huge, hindering its development and applications. Herein, 4 Mb phase change memory (PCM) chips are first fabricated that enable two key in‐memory computing operations—in‐memory multiply‐accumulate (MAC) and in‐memory rank for efficient NAS. The impacts of the coating layer material are systematically analyzed for the blade‐type heating electrode on the device uniformity and in turn NAS performance. The random weights in the searched network architecture can be fine‐tuned in the last stage. With 512 × 512 arrays based on 40 nm CMOS process, the PCM‐based NAS has achieved 25–53× smaller model size and better performance than manually designed networks and improved the energy and time efficiency by 4779× and 123×, respectively, compared with NAS running on graphic processing unit (GPU). This work can expand the hardware accelerated in‐memory operators, and significantly extend the applications of in‐memory computing enabled by nonvolatile memory in advanced machine learning tasks.
Neural architecture search (NAS), as a subfield of automated machine learning, can design neural network models with better performance than manual design. However, the energy and time consumptions of conventional software‐based NAS are huge, hindering its development and applications. Herein, 4 Mb phase change memory (PCM) chips are first fabricated that enable two key in‐memory computing operations—in‐memory multiply‐accumulate (MAC) and in‐memory rank for efficient NAS. The impacts of the coating layer material are systematically analyzed for the blade‐type heating electrode on the device uniformity and in turn NAS performance. The random weights in the searched network architecture can be fine‐tuned in the last stage. With 512 × 512 arrays based on 40 nm CMOS process, the PCM‐based NAS has achieved 25–53× smaller model size and better performance than manually designed networks and improved the energy and time efficiency by 4779× and 123×, respectively, compared with NAS running on graphic processing unit (GPU). This work can expand the hardware accelerated in‐memory operators, and significantly extend the applications of in‐memory computing enabled by nonvolatile memory in advanced machine learning tasks. Herein, 4 Mb phase change memory chips are first fabricated that enable two key in‐memory computing operations—in‐memory multiply accumulate (MAC) and in‐memory rank for efficient NAS. With 512 × 512 arrays the PCM‐based NAS has achieved 25–53× smaller model size and better performance than manually designed networks, and improved the energy and time efficiency by 4779× and 123×, respectively, compared with GPU.
Author Yan, Longhao
Zhang, Teng
Tao, Yaoyu
Zhong, Min
Shi, Daijing
Li, Xi
Li, Yuqi
Yan, Bonan
Zhou, Xilin
Yu, Lianfeng
Wu, Qingyu
Song, Zhitang
Huang, Ru
Xie, Chenchen
Yang, Yuchao
Author_xml – sequence: 1
  givenname: Longhao
  surname: Yan
  fullname: Yan, Longhao
  organization: Peking University
– sequence: 2
  givenname: Qingyu
  surname: Wu
  fullname: Wu, Qingyu
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Xi
  surname: Li
  fullname: Li, Xi
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Chenchen
  surname: Xie
  fullname: Xie, Chenchen
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Xilin
  surname: Zhou
  fullname: Zhou, Xilin
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Yuqi
  surname: Li
  fullname: Li, Yuqi
  organization: Peking University
– sequence: 7
  givenname: Daijing
  surname: Shi
  fullname: Shi, Daijing
  organization: Peking University
– sequence: 8
  givenname: Lianfeng
  surname: Yu
  fullname: Yu, Lianfeng
  organization: Peking University
– sequence: 9
  givenname: Teng
  surname: Zhang
  fullname: Zhang, Teng
  organization: Peking University
– sequence: 10
  givenname: Yaoyu
  surname: Tao
  fullname: Tao, Yaoyu
  organization: Peking University
– sequence: 11
  givenname: Bonan
  surname: Yan
  fullname: Yan, Bonan
  organization: Peking University
– sequence: 12
  givenname: Min
  surname: Zhong
  fullname: Zhong, Min
  organization: Shanghai Integrated Circuit R&D Center
– sequence: 13
  givenname: Zhitang
  surname: Song
  fullname: Song, Zhitang
  email: ztsong@mail.sim.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 14
  givenname: Yuchao
  orcidid: 0000-0003-4674-4059
  surname: Yang
  fullname: Yang, Yuchao
  email: yuchaoyang@pku.edu.cn
  organization: Chinese Institute for Brain Research (CIBR)
– sequence: 15
  givenname: Ru
  surname: Huang
  fullname: Huang, Ru
  email: ruhuang@pku.edu.cn
  organization: Peking University
BookMark eNpVUdtKw0AQXUTB66vPCz5H99a0eYypN2it2Aq-henutI0mm7hJKPGpnyD4Af5bv8SUSsF5mTnMOWdgzjHZt7lFQs45u-SMiSsws-xSMCEZU53eHjniPvc9yURvfzfz10NyXJZvjPFuV6oj8vOItYOUhk4vkgp1VTukY4QW0mVSLeiDXa--hpjlrqHDOq2SIm3Wq-9Q6zqrU6iQgjX_WM9g3-k1lGhobmmUQ5XYOR1Ag46OiirJks92FbWCfl600x2K8VRMsEOfFq2KRguwc6Rbt1NyMIO0xLO_fkJebm8m0b03GN09ROHAK4SUPU8oQMN7DNpCDVoa7uvNLwQL_A5KyRXowJipmnWNEgAm4GrKpK-7Wkw1yBNysfUtXP5RY1nFb3ntbHsylkyqQCjBZcsKtqxlkmITFy7JwDUxZ_EmgXiTQLxLIA77t8Mdkr-DLIOv
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH
DBID 7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202300458
DatabaseName Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID ADFM202300458
Genre article
GrantInformation_xml – fundername: Youth Innovation Promotion Association, CAS
  funderid: 2018268
– fundername: National Natural Science Foundation of China
  funderid: 61925401; 92064004; 61927901; 92164302; 91964204
– fundername: Strategic Priority Research Program of the Chinese Academy of Sciences
  funderid: XDB44010200
– fundername: Science and Technology Council of Shanghai
  funderid: 19JC1416801
– fundername: 111 Project
  funderid: B18001
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
7SP
7SR
7U5
8BQ
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-p2338-24aed180aaaaecac3d16c202320965e3314ac9ddb4f7d42aad914b036c7c2bca3
IEDL.DBID DRFUL
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001038798800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1616-301X
IngestDate Fri Jul 25 03:11:20 EDT 2025
Wed Jan 22 17:19:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2338-24aed180aaaaecac3d16c202320965e3314ac9ddb4f7d42aad914b036c7c2bca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4674-4059
PQID 3034924213
PQPubID 2045204
PageCount 10
ParticipantIDs proquest_journals_3034924213
wiley_primary_10_1002_adfm_202300458_ADFM202300458
PublicationCentury 2000
PublicationDate April 10, 2024
PublicationDateYYYYMMDD 2024-04-10
PublicationDate_xml – month: 04
  year: 2024
  text: April 10, 2024
  day: 10
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2022; 376
2021; 4
2020; 63
2019; 2
2019; 10
2002; 10
2020; 15
2019; 19
2007
2020; 11
2008; 1
2020; 6
2019; 20
2022
2022; 5
2018; 1
2021
2020
2022; 34
2019
2022; 13
2020; 577
2022; 57
2018
2017
2016
2022; 608
2022; 601
References_xml – volume: 608
  start-page: 504
  year: 2022
  publication-title: Nature
– volume: 63
  year: 2020
  publication-title: Sci. China Inf. Sci.
– volume: 5
  start-page: 761
  year: 2022
  publication-title: Nat. Electron.
– volume: 13
  start-page: 3973
  year: 2022
  publication-title: Nat. Commun.
– volume: 57
  start-page: 1027
  year: 2022
  publication-title: IEEE J. Solid‐State Circuits
– volume: 2
  start-page: 290
  year: 2019
  publication-title: Nat. Electron.
– volume: 376
  start-page: 1066
  year: 2022
  publication-title: Science
– year: 2007
– volume: 20
  start-page: 1
  year: 2019
  publication-title: J. Mach. Learn. Res.
– year: 2021
– volume: 577
  start-page: 641
  year: 2020
  publication-title: Nature
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 601
  start-page: 211
  year: 2022
  publication-title: Nature
– volume: 10
  start-page: 461
  year: 2019
  publication-title: Micromachines
– year: 2016
– year: 2018
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 11
  start-page: 2473
  year: 2020
  publication-title: Nat. Commun.
– volume: 13
  start-page: 3765
  year: 2022
  publication-title: Nat. Commun.
– volume: 1
  start-page: 1313
  year: 2008
  publication-title: Proc. VLDB Endow.
– volume: 1
  start-page: 333
  year: 2018
  publication-title: Nat. Electron.
– volume: 4
  start-page: 81
  year: 2021
  publication-title: Nat. Electron.
– year: 2022
– year: 2020
– volume: 4
  start-page: 921
  year: 2021
  publication-title: Nat. Electron.
– volume: 19
  start-page: 164
  year: 2019
  publication-title: IEEE Trans. Device Mater. Reliab.
– volume: 10
  start-page: 99
  year: 2002
  publication-title: Evol. Comput.
– year: 2017
– year: 2019
– volume: 15
  start-page: 812
  year: 2020
  publication-title: Nat. Nanotechnol.
– volume: 13
  start-page: 4698
  year: 2022
  publication-title: Nat. Commun.
SSID ssj0017734
Score 2.5026658
Snippet Neural architecture search (NAS), as a subfield of automated machine learning, can design neural network models with better performance than manual design....
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Chips (memory devices)
Cognitive tasks
Computation
Computer architecture
Computer memory
Graphics processing units
in‐memory computing
in‐memory rank
Machine learning
neural architecture search
Neural networks
operators
phase change memory
Title Neural Architecture Search with In‐Memory Multiply–Accumulate and In‐Memory Rank Based on Coating Layer Optimized C‐Doped Ge2Sb2Te5 Phase Change Memory
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202300458
https://www.proquest.com/docview/3034924213
Volume 34
WOSCitedRecordID wos001038798800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1616-3028
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017734
  issn: 1616-301X
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI5gcIADb8RbOXCtWJx06Y5jY4C0AeIh7VblVTEhuokBEpz4CUj8AP4bv4S4GWO7Qk-pGketbMdubH8mZF9CzL3Xn0WVmOtIxJZFSWazSCqRZUZn3gQVnG7Js7Ok06lejFXxB3yI0YEbakaxX6OCKz04-AUNVTbDSnJAyKg4mSYz4IVXlMhM47J50xpFEqQMkeUKwxwv1vkBbizDweQKEy7muKNaWJrm4v_fcYksDL1MWgtisUymXL5C5sewB1fJJ8JyFHN-Iwk0JB9TPJylp_nX23sbE3FfaDukHb58vX3UjHm6x55fjqrcTsy6VPkdPfRm0dJeTus9hSnVtKW8V0_P_dZ03331j-qeoNHr-9GxgysN1y6mF7eeioZKBxpWWyM3zaPr-kk07NYQ9cH_50YglLMsKSt_OaMMt6xi8NsBAWYc50woU7VWi0xaAUrZKhPaG1AjDWij-Dop5b3cbRBquQSXaCuxR7lwxvtIiPEDUrOKBQObZOeHVelQ5QYpR6QdDHDzTQIFU9J-AOxIAzQzpMiOdMSOtNZotkd3W38h2iZzflxk8rDyDik9Pjy5XTJrnh-7g4e9oSh-A5E-5MM
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-MwEB5BQWI5LM8VsDx84BpRP1Knx9JSQKQFQZF6ixzbEQiRVtAiwYmfsNL-gP1v_JL1xKHQKyKnPGwr0cx4JjOfPwPsSxZyF_VnQS3kaSBCQ4MoM1kglcgynWbOBRWSjmW3G_X79YsSTYhrYTw_xCThhpZRzNdo4JiQPvhgDVUmw6XkDDmjwmgW5oTTpbACc63L9nU8KSVI6UvLNYogL9p_Z26ssoPpEaZizM-RauFq2kvf8JLL8LOMM0nDK8YKzNh8FRY_sQ-uwT8k5ijafNQSiIcfE0zPktP87fVPB6G4z6TjgYfPb69_G1qP73HXL0tUbqZaXar8jhw6x2jIICfNgUJQNYmVi-vJuZuc7m9f3KOm69AaDN3ZsWVXKevZkFzcuF7Er3UgfrR1uG4f9ZonQblfQzBk7k83YEJZQ6OqcofVSnNDaxq_nSHFjOWcCqXrxqQik0YwpUyditS5UC01S7Xiv6CSD3K7AcRwyWyUGom7lAurXZSELD9MprRmmGabsP0uq6Q0useEI9cOlrj5JrBCKsnQU3YknpyZJSiOZCKOpNFqdyZXW1_ptAcLJ71OnMSn3bPf8MPdL3A9tLoNldHD2O7AvH4a3T4-7JZ6-R9DV-iz
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELXYhODAjtjxgWtEvSROj6UlgGhLxSL1FjleRIVIKzYJTnwCEh_Av_EleOJQ6BWRUxbbSjQez8Tz5g1Ce4KGzHn9NohClgU81CSIrbaBkNxalVlnggpJN0W7HXe71U6JJoRcGM8PMdxwA80o1mtQcDPQdv-HNVRqC6nkFDijwngcTfKwGjndnGycJ1fNYShBCB9ajgiAvEj3m7mxQvdHRxjxMX97qoWpSeb_4SUX0FzpZ-KanxiLaMzkS2j2F_vgMvoAYo6izU8sAXv4MYbtWXySf76-tQCK-4xbHnj4_Pn6XlPq8Raqfhkscz3S6lzmN_jAGUaN-zmu9yWAqnFTOr8en7nF6bb34h7VXYdGf-DOjgy9yOilCXHn2vXCPtcB-9FW0FVyeFk_Dsp6DcGAuj_dgHJpNIkr0h1GScU0iRR8OwWKGcMY4VJVtc64FZpTKXWV8MyZUCUUzZRkq2gi7-dmDWHNBDVxpgVUKedGOS8JWH6oyEikqaLraOtbVmmpdPcpA64dCHGzdUQLqaQDT9mRenJmmoI40qE40lojaQ2vNv7SaRdNdxpJ2jxpn26iGXe7gPWQyhaaeLh7NNtoSj099O7vdspp-QXxK-gu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+Architecture+Search+with+In%E2%80%90Memory+Multiply%E2%80%93Accumulate+and+In%E2%80%90Memory+Rank+Based+on+Coating+Layer+Optimized+C%E2%80%90Doped+Ge2Sb2Te5+Phase+Change+Memory&rft.jtitle=Advanced+functional+materials&rft.au=Yan%2C+Longhao&rft.au=Wu%2C+Qingyu&rft.au=Li%2C+Xi&rft.au=Xie%2C+Chenchen&rft.date=2024-04-10&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=15&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202300458&rft.externalDBID=10.1002%252Fadfm.202300458&rft.externalDocID=ADFM202300458
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon