An Optimal Multigrid Algorithm for the Combining P1-Q1 Finite Element Approximations of Interface Problems Based on Local Anisotropic Fitting Meshes
A new finite element method is proposed for second order elliptic interface problems based on a local anisotropic fitting mixed mesh. The local anisotropic fitting mixed mesh is generated from an interface-unfitted mesh by simply connecting the intersected points of the interface and the underlying...
Uloženo v:
| Vydáno v: | Journal of scientific computing Ročník 88; číslo 1; s. 16 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.07.2021
Springer Nature B.V |
| Témata: | |
| ISSN: | 0885-7474, 1573-7691 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A new finite element method is proposed for second order elliptic interface problems based on a local anisotropic fitting mixed mesh. The local anisotropic fitting mixed mesh is generated from an interface-unfitted mesh by simply connecting the intersected points of the interface and the underlying mesh successively. Optimal approximation capabilities on anisotropic elements are proved, the convergence rates are linear and quadratic in
H
1
and
L
2
norms, respectively. The discrete system is usually ill-conditioned due to anisotropic and small elements near the interface. Thereupon, a new multigrid method is presented to handle this issue. The convergence rate of the multigrid method is shown to be optimal with respect to both the coefficient jump ratio and mesh size. Numerical experiments are presented to demonstrate the theoretical results. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0885-7474 1573-7691 |
| DOI: | 10.1007/s10915-021-01536-6 |