An optimal-time algorithm for slope selection
Given $n$ points in the plane and an integer $k$, the problem of selecting that pair of points that determines the line with the $k$th smallest or largest slope is considered. In the restricted case, where $k$ is $O(n)$, line sweeping gives an optimal, $O(n\log n)$-time algorithm. For general $k$ th...
Uloženo v:
| Vydáno v: | SIAM journal on computing Ročník 18; číslo 4; s. 792 - 810 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Philadelphia, PA
Society for Industrial and Applied Mathematics
01.08.1989
|
| Témata: | |
| ISSN: | 0097-5397, 1095-7111 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Given $n$ points in the plane and an integer $k$, the problem of selecting that pair of points that determines the line with the $k$th smallest or largest slope is considered. In the restricted case, where $k$ is $O(n)$, line sweeping gives an optimal, $O(n\log n)$-time algorithm. For general $k$ the parametric search technique of Megiddo is used to describe an $O(n(\log n)^2 )$-time algorithm. This is modified to produce a new, optimal $O(n\log n)$-time selection algorithm by incorporating an approximation idea. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 |
| ISSN: | 0097-5397 1095-7111 |
| DOI: | 10.1137/0218055 |