An optimal-time algorithm for slope selection

Given $n$ points in the plane and an integer $k$, the problem of selecting that pair of points that determines the line with the $k$th smallest or largest slope is considered. In the restricted case, where $k$ is $O(n)$, line sweeping gives an optimal, $O(n\log n)$-time algorithm. For general $k$ th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SIAM journal on computing Ročník 18; číslo 4; s. 792 - 810
Hlavní autoři: COLE, R, SALOWE, J. S, STEIGER, W. L, SZEMEREDI, E
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia, PA Society for Industrial and Applied Mathematics 01.08.1989
Témata:
ISSN:0097-5397, 1095-7111
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Given $n$ points in the plane and an integer $k$, the problem of selecting that pair of points that determines the line with the $k$th smallest or largest slope is considered. In the restricted case, where $k$ is $O(n)$, line sweeping gives an optimal, $O(n\log n)$-time algorithm. For general $k$ the parametric search technique of Megiddo is used to describe an $O(n(\log n)^2 )$-time algorithm. This is modified to produce a new, optimal $O(n\log n)$-time selection algorithm by incorporating an approximation idea.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:0097-5397
1095-7111
DOI:10.1137/0218055