An optimal-time algorithm for slope selection
Given $n$ points in the plane and an integer $k$, the problem of selecting that pair of points that determines the line with the $k$th smallest or largest slope is considered. In the restricted case, where $k$ is $O(n)$, line sweeping gives an optimal, $O(n\log n)$-time algorithm. For general $k$ th...
Saved in:
| Published in: | SIAM journal on computing Vol. 18; no. 4; pp. 792 - 810 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Philadelphia, PA
Society for Industrial and Applied Mathematics
01.08.1989
|
| Subjects: | |
| ISSN: | 0097-5397, 1095-7111 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Given $n$ points in the plane and an integer $k$, the problem of selecting that pair of points that determines the line with the $k$th smallest or largest slope is considered. In the restricted case, where $k$ is $O(n)$, line sweeping gives an optimal, $O(n\log n)$-time algorithm. For general $k$ the parametric search technique of Megiddo is used to describe an $O(n(\log n)^2 )$-time algorithm. This is modified to produce a new, optimal $O(n\log n)$-time selection algorithm by incorporating an approximation idea. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 |
| ISSN: | 0097-5397 1095-7111 |
| DOI: | 10.1137/0218055 |