Inverses of Block Tridiagonal Matrices and Rounding Errors

Based on URV-decomposition in Stewart [An updating algorithm for subspace tracking, IEEE Trans. Signal Processing, 40 (1992): 1535--1541] and the result of Mehrmann [Divide and conquer methods for block tridiagonal systems, \emph{Parallel Comput.}, 19 (1993): 257--279], inverses of block tridiagonal...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Bulletin of the Malaysian Mathematical Sciences Society Ročník 34; číslo 2
Hlavní autoři: Wu, ChiYe, Huang, TingZhu, Li, Liang, Lv, XiaoGuang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Heidelberg Springer Nature B.V 01.01.2011
Témata:
ISSN:0126-6705, 2180-4206
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Based on URV-decomposition in Stewart [An updating algorithm for subspace tracking, IEEE Trans. Signal Processing, 40 (1992): 1535--1541] and the result of Mehrmann [Divide and conquer methods for block tridiagonal systems, \emph{Parallel Comput.}, 19 (1993): 257--279], inverses of block tridiagonal matrices are presented. The computational complexity of the proposed algorithm is less than that of the Block Gaussian-Jordan Elimination method when the orders of the matrices are not less than 100. Expressions for the rounding errors incurred during the process of the computation of the inverses of block tridiagonal matrices are also considered. Moreover, from the experiment, it shows that the norms of the errors generated from the Block Gaussian-Jordan Elimination method are larger than those of the proposed algorithm. 2010 Mathematics Subject Classification: 65F05, 65G50, 65Y20.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0126-6705
2180-4206