Classification of stroke disease using machine learning algorithms

This paper presents a prototype to classify stroke that combines text mining tools and machine learning algorithms. Machine learning can be portrayed as a significant tracker in areas like surveillance, medicine, data management with the aid of suitably trained machine learning algorithms. Data mini...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications Jg. 32; H. 3; S. 817 - 828
Hauptverfasser: Govindarajan Priya, Soundarapandian Ravichandran Kattur, Gandomi, Amir H, Patan Rizwan, Jayaraman Premaladha, Ramachandran, Manikandan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Heidelberg Springer Nature B.V 01.02.2020
Schlagworte:
ISSN:0941-0643, 1433-3058
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a prototype to classify stroke that combines text mining tools and machine learning algorithms. Machine learning can be portrayed as a significant tracker in areas like surveillance, medicine, data management with the aid of suitably trained machine learning algorithms. Data mining techniques applied in this work give an overall review about the tracking of information with respect to semantic as well as syntactic perspectives. The proposed idea is to mine patients’ symptoms from the case sheets and train the system with the acquired data. In the data collection phase, the case sheets of 507 patients were collected from Sugam Multispecialty Hospital, Kumbakonam, Tamil Nadu, India. Next, the case sheets were mined using tagging and maximum entropy methodologies, and the proposed stemmer extracts the common and unique set of attributes to classify the strokes. Then, the processed data were fed into various machine learning algorithms such as artificial neural networks, support vector machine, boosting and bagging and random forests. Among these algorithms, artificial neural networks trained with a stochastic gradient descent algorithm outperformed the other algorithms with a higher classification accuracy of 95% and a smaller standard deviation of 14.69.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0941-0643
1433-3058
DOI:10.1007/s00521-019-04041-y