On ε-phase-isometries between the positive cones of continuous function spaces

Let K and T be compact Hausdorff spaces, C+(K)={f∈C(K):f(k)≥0forallk∈K} be the positive cone of C(K). In this paper, we prove that if K is a compact Hausdorff perfectly normal space, then for every ε-phase-isometry F:C+(K)→C+(T), there are nonempty closed subset S⊂T and an additive isometry V:C+(K)→...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Indian journal of pure and applied mathematics Ročník 56; číslo 2; s. 728 - 736
Hlavní autori: Wang, Wenting, An, Aimin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Heidelberg Springer Nature B.V 01.06.2025
Predmet:
ISSN:0019-5588, 0975-7465
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Let K and T be compact Hausdorff spaces, C+(K)={f∈C(K):f(k)≥0forallk∈K} be the positive cone of C(K). In this paper, we prove that if K is a compact Hausdorff perfectly normal space, then for every ε-phase-isometry F:C+(K)→C+(T), there are nonempty closed subset S⊂T and an additive isometry V:C+(K)→C+(S) defined as V(f)=limn→∞F(2nf)|S2n for each f∈C+(K) satisfying that ‖F(f)|S-V(f)‖≤32ε,forallf∈C+(K).Moreover, if F is almost surjective, then there exists a unique homeomorphism γ:T→K such that |F(f)(t)-f(γ(t))|≤32ε,t∈T,f∈C+(K).
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0019-5588
0975-7465
DOI:10.1007/s13226-023-00514-y