The Maximum Number of Zeros of r(z)-z¯ Revisited
Generalizing several previous results in the literature on rational harmonic functions, we derive bounds on the maximum number of zeros of functions f ( z ) = p ( z ) q ( z ) - z ¯ , which depend on both deg ( p ) and deg ( q ) . Furthermore, we prove that any function that attains one of these uppe...
Uložené v:
| Vydané v: | Computational methods and function theory Ročník 18; číslo 3; s. 463 - 472 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2018
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1617-9447, 2195-3724 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Generalizing several previous results in the literature on rational harmonic functions, we derive bounds on the maximum number of zeros of functions
f
(
z
)
=
p
(
z
)
q
(
z
)
-
z
¯
, which depend on both
deg
(
p
)
and
deg
(
q
)
. Furthermore, we prove that any function that attains one of these upper bounds is regular. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1617-9447 2195-3724 |
| DOI: | 10.1007/s40315-017-0231-1 |