The Maximum Number of Zeros of r(z)-z¯ Revisited

Generalizing several previous results in the literature on rational harmonic functions, we derive bounds on the maximum number of zeros of functions f ( z ) = p ( z ) q ( z ) - z ¯ , which depend on both deg ( p ) and deg ( q ) . Furthermore, we prove that any function that attains one of these uppe...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computational methods and function theory Ročník 18; číslo 3; s. 463 - 472
Hlavní autori: Liesen, Jörg, Zur, Jan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2018
Springer Nature B.V
Predmet:
ISSN:1617-9447, 2195-3724
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Generalizing several previous results in the literature on rational harmonic functions, we derive bounds on the maximum number of zeros of functions f ( z ) = p ( z ) q ( z ) - z ¯ , which depend on both deg ( p ) and deg ( q ) . Furthermore, we prove that any function that attains one of these upper bounds is regular.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1617-9447
2195-3724
DOI:10.1007/s40315-017-0231-1