The second moment of GL3×GL2L-functions at special points

Let ϕ be a fixed Hecke–Maass form for SL3(Z) and uj traverse an orthonormal basis of Hecke–Maass forms for SL2(Z). Let 1/4+tj2 be the Laplace eigenvalue of uj. In this paper, we prove the mean Lindelöf hypothesis for the second moment of L(1/2+itj,ϕ×uj) on T<tj⩽T+T. Previously, this was proven by...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematische annalen Ročník 393; číslo 1; s. 1429 - 1457
Hlavní autor: Qi, Zhi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Heidelberg Springer Nature B.V 01.09.2025
Témata:
ISSN:0025-5831, 1432-1807
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Let ϕ be a fixed Hecke–Maass form for SL3(Z) and uj traverse an orthonormal basis of Hecke–Maass forms for SL2(Z). Let 1/4+tj2 be the Laplace eigenvalue of uj. In this paper, we prove the mean Lindelöf hypothesis for the second moment of L(1/2+itj,ϕ×uj) on T<tj⩽T+T. Previously, this was proven by Young on tj⩽T. Our approach is more direct as we do not apply the Poisson summation formula to detect the ‘Eisenstein–Kloosterman’ cancellation.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0025-5831
1432-1807
DOI:10.1007/s00208-025-03267-7