The second moment of GL3×GL2L-functions at special points
Let ϕ be a fixed Hecke–Maass form for SL3(Z) and uj traverse an orthonormal basis of Hecke–Maass forms for SL2(Z). Let 1/4+tj2 be the Laplace eigenvalue of uj. In this paper, we prove the mean Lindelöf hypothesis for the second moment of L(1/2+itj,ϕ×uj) on T<tj⩽T+T. Previously, this was proven by...
Uložené v:
| Vydané v: | Mathematische annalen Ročník 393; číslo 1; s. 1429 - 1457 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Heidelberg
Springer Nature B.V
01.09.2025
|
| Predmet: | |
| ISSN: | 0025-5831, 1432-1807 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Let ϕ be a fixed Hecke–Maass form for SL3(Z) and uj traverse an orthonormal basis of Hecke–Maass forms for SL2(Z). Let 1/4+tj2 be the Laplace eigenvalue of uj. In this paper, we prove the mean Lindelöf hypothesis for the second moment of L(1/2+itj,ϕ×uj) on T<tj⩽T+T. Previously, this was proven by Young on tj⩽T. Our approach is more direct as we do not apply the Poisson summation formula to detect the ‘Eisenstein–Kloosterman’ cancellation. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0025-5831 1432-1807 |
| DOI: | 10.1007/s00208-025-03267-7 |