Artificial Intelligence for Predicting Treatment Failure in Neurourology: From Automated Urodynamics to Precision Management

Artificial intelligence (AI) has emerged as a transformative tool for advancing diagnosis, monitoring, and treatment planning in neurourology. This review synthesizes recent progress in AI-based models for predicting treatment failure in neurogenic lower urinary tract dysfunction. Machine learning a...

Full description

Saved in:
Bibliographic Details
Published in:International neurourology journal pp. 55 - 64
Main Authors: Seunghyun Youn, Beom Jin Park
Format: Journal Article
Language:English
Published: 대한배뇨장애요실금학회 01.11.2025
Subjects:
ISSN:2093-4777, 2093-6931
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Artificial intelligence (AI) has emerged as a transformative tool for advancing diagnosis, monitoring, and treatment planning in neurourology. This review synthesizes recent progress in AI-based models for predicting treatment failure in neurogenic lower urinary tract dysfunction. Machine learning and deep learning algorithms applied to urodynamic, clinical, and neuroimaging data have demonstrated strong potential to identify patients at risk of therapeutic nonresponse and improve individualized management. Automated systems now enable precise interpretation of complex bladder signals, multimodal data integration, and real-time prediction of treatment outcomes, marking a shift toward data-driven precision medicine. Nevertheless, most published studies remain limited by small, single-center datasets and a lack of external validation. Broader clinical adoption will require multicenter collaboration, adherence to standardized reporting frameworks such as TRIPOD-ML and PRO BAST-AI, and integration of explainable AI to ensure transparency, reproducibility, and clinician trust. KCI Citation Count: 0
AbstractList Artificial intelligence (AI) has emerged as a transformative tool for advancing diagnosis, monitoring, and treatment planning in neurourology. This review synthesizes recent progress in AI-based models for predicting treatment failure in neurogenic lower urinary tract dysfunction. Machine learning and deep learning algorithms applied to urodynamic, clinical, and neuroimaging data have demonstrated strong potential to identify patients at risk of therapeutic nonresponse and improve individualized management. Automated systems now enable precise interpretation of complex bladder signals, multimodal data integration, and real-time prediction of treatment outcomes, marking a shift toward data-driven precision medicine. Nevertheless, most published studies remain limited by small, single-center datasets and a lack of external validation. Broader clinical adoption will require multicenter collaboration, adherence to standardized reporting frameworks such as TRIPOD-ML and PRO BAST-AI, and integration of explainable AI to ensure transparency, reproducibility, and clinician trust. KCI Citation Count: 0
Author Beom Jin Park
Seunghyun Youn
Author_xml – sequence: 1
  fullname: Seunghyun Youn
  organization: (GRK Partners Research Center, Seoul, Korea)
– sequence: 2
  fullname: Beom Jin Park
  organization: (Department of Radiology and Advanced Medical Imaging Institute, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea)
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003269605$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNotzM9LwzAcBfAgE5xzZ685C5tJ0_SbeivD6WD-QOq5fJumJVubQJodBv7xbrrHg_dOn1sycd4ZQu45W8qEi0frdstESiZ4tuRSXZFpwnKxyHLBJ5efAsANmY_jjp2SpsAkTMlPEaJtrbbY042Lpu9tZ5w2tPWBfgbTWB2t62gZDMbBuEjXaPtDMNQ6-m4OwZ_a--74RNfBD7Q4RD9gNA39Dr45OhysHmn0Z0vb0XpH39BhZ87WHblusR_N_LIzUq6fy9XrYvvxslkV24WDTC1UgrwRWmngdZ1nQoicaWgbhapVTaYBtWJZowAwRWkSI5WUNSa65RwgqcWMPPyzLrTVXtvKo_3bzlf7UBVf5abiDE4IgPgFuVtm6g
ContentType Journal Article
DBID ACYCR
DOI 10.5213/inj.2550316.158
DatabaseName Korean Citation Index
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2093-6931
EndPage 64
ExternalDocumentID oai_kci_go_kr_ARTI_10780677
GroupedDBID ---
5-W
53G
8JR
8XY
AAKDD
ABDBF
ACUHS
ACYCR
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
DIK
E3Z
EBD
EF.
F5P
GROUPED_DOAJ
HYE
OK1
RPM
ID FETCH-LOGICAL-n768-82a1d3c8c71bb9633390c7fd8a8f8d6c7ac806d877a4a5e2e5855ba2cf11772b3
ISSN 2093-4777
IngestDate Wed Dec 10 07:55:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-n768-82a1d3c8c71bb9633390c7fd8a8f8d6c7ac806d877a4a5e2e5855ba2cf11772b3
Notes https://doi.org/10.5213/inj.2550316.158
OpenAccessLink http://dx.doi.org/10.5213/inj.2550316.158
PageCount 10
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10780677
PublicationCentury 2000
PublicationDate 2025-11
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11
PublicationDecade 2020
PublicationTitle International neurourology journal
PublicationYear 2025
Publisher 대한배뇨장애요실금학회
Publisher_xml – name: 대한배뇨장애요실금학회
SSID ssj0000447057
Score 2.3413
SecondaryResourceType online_first
Snippet Artificial intelligence (AI) has emerged as a transformative tool for advancing diagnosis, monitoring, and treatment planning in neurourology. This review...
SourceID nrf
SourceType Open Website
StartPage 55
SubjectTerms 비뇨기과학
Title Artificial Intelligence for Predicting Treatment Failure in Neurourology: From Automated Urodynamics to Precision Management
URI https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003269605
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX International Neurourology Journal, 2025, 29(0), , pp.55-64
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2093-6931
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000447057
  issn: 2093-4777
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKQGgviKsYN1kCP1UZudvmzS2ZAMHUhyLtrYodZ2QDB4V2GhL_mD_BsZMmWR_QeECKoiO3cpOcL8fnuJ8_I_SKJrxU0s-9RCnmxUrCO1dS7nHJi0AxzvzS6cx-pMfH7OSELyaT39u1MBdfqTHs8pJ__6-uhjZwtl06-w_u7juFBrDB6XAGt8P5Wo4XjaP_tCIaI71NyydcNPZ_Gcd0XvYM86O8stx0O_PhpDrgcCtYIgFpbf1tKjbrGvJayEw_Q7Rtd7B3uhCLptugZ5dEczbQ44fZRjPqezq-E8c2hpjz5efGTG306acINPz6B7isxXZBUTc9ESbdOr0toEg2I2xuWRvZW8ITwue2Zebbw35EiWAkmxOeEZE4IyHCd4YgPLYGmxEBhiAzRhjb9sOdIaDzIWKGPo-8mHb7wuihLeXdUNNG6VYYuBvvWxH13ZEEshqraFGZs0MouiDypYdBqzF_VbN7Zyy9otp9rqrVab06b1ZQm7xfQaHNrF7fDXQzhFeEjep_lzbEMfWdMm1_G60Ulb2U1zsXApmQacpRJrS8i-50JQwWLfTuoYk299HtTx1J4wH6NSAQjxGIAYF4QCDuEYg7BOLK4DEC32CLP9zjD4_wh9c17vGHB_w9RMujbDl_53WbfHgGKl2PhXlQRIopGkgJg0EUcV_RsmA5K1mRKporeGgFozSP80SHGsrbROahKi3bIJTRI7RnaqMfI2x1nHRaBmWu41iHHApnHclchioNqZTqAL2EZ-a88hfvPLnWt56i_QHsz9Deutno5-iWulhXP5oXzrF_AIApjz8
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence+for+Predicting+Treatment+Failure+in+Neurourology%3A+From+Automated+Urodynamics+to+Precision+Management&rft.jtitle=International+neurourology+journal&rft.au=Seunghyun+Youn&rft.au=Beom+Jin+Park&rft.date=2025-11-01&rft.pub=%EB%8C%80%ED%95%9C%EB%B0%B0%EB%87%A8%EC%9E%A5%EC%95%A0%EC%9A%94%EC%8B%A4%EA%B8%88%ED%95%99%ED%9A%8C&rft.issn=2093-4777&rft.eissn=2093-6931&rft.spage=55&rft.epage=64&rft_id=info:doi/10.5213%2Finj.2550316.158&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10780677
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2093-4777&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2093-4777&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2093-4777&client=summon