Error Analysis of a Finite Element-Integral Equation Scheme for Approximating the Time-Harmonic Maxwell System

In 1996 Hazard and Lenoir suggested a variational formulation of Maxwell's equations using an overlapping integral equation and volume representation of the solution [SIAM J. Math. Anal., 27 (1996), pp. 1597-1630]. They suggested a numerical scheme based on this approach, but no error analysis...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SIAM journal on numerical analysis Ročník 40; číslo 1; s. 198 - 219
Hlavní autoři: Hsiao, G. C., Monk, P. B., N. Nigam
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia, PA Society for Industrial and Applied Mathematics 01.01.2003
Témata:
ISSN:0036-1429
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In 1996 Hazard and Lenoir suggested a variational formulation of Maxwell's equations using an overlapping integral equation and volume representation of the solution [SIAM J. Math. Anal., 27 (1996), pp. 1597-1630]. They suggested a numerical scheme based on this approach, but no error analysis was provided. In this paper, we provide a convergence analysis of an edge finite element scheme for the method. The analysis uses the theory of collectively compact operators. Its novelty is that a perturbation argument is needed to obtain error estimates for the solution of the discrete problem that is best suited for implementation.
ISSN:0036-1429