Error Analysis of a Finite Element-Integral Equation Scheme for Approximating the Time-Harmonic Maxwell System
In 1996 Hazard and Lenoir suggested a variational formulation of Maxwell's equations using an overlapping integral equation and volume representation of the solution [SIAM J. Math. Anal., 27 (1996), pp. 1597-1630]. They suggested a numerical scheme based on this approach, but no error analysis...
Uloženo v:
| Vydáno v: | SIAM journal on numerical analysis Ročník 40; číslo 1; s. 198 - 219 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Philadelphia, PA
Society for Industrial and Applied Mathematics
01.01.2003
|
| Témata: | |
| ISSN: | 0036-1429 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In 1996 Hazard and Lenoir suggested a variational formulation of Maxwell's equations using an overlapping integral equation and volume representation of the solution [SIAM J. Math. Anal., 27 (1996), pp. 1597-1630]. They suggested a numerical scheme based on this approach, but no error analysis was provided. In this paper, we provide a convergence analysis of an edge finite element scheme for the method. The analysis uses the theory of collectively compact operators. Its novelty is that a perturbation argument is needed to obtain error estimates for the solution of the discrete problem that is best suited for implementation. |
|---|---|
| ISSN: | 0036-1429 |