A Neumann-Neumann Domain Decomposition Algorithm for Solving Plate and Shell Problems

We present a new Neumann-Neumann-type preconditioner of large scale linear systems arising from plate and shell problems. The advantage of the new method is a smaller coarse space than those of earlier methods of the authors; this improves parallel scalability. A new abstract framework for Neumann-N...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SIAM journal on numerical analysis Ročník 35; číslo 2; s. 836 - 867
Hlavní autoři: Le Tallec, Patrick, Mandel, Jan, Vidrascu, Marina
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia Society for Industrial and Applied Mathematics 01.04.1998
Témata:
ISSN:0036-1429, 1095-7170
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present a new Neumann-Neumann-type preconditioner of large scale linear systems arising from plate and shell problems. The advantage of the new method is a smaller coarse space than those of earlier methods of the authors; this improves parallel scalability. A new abstract framework for Neumann-Neumann preconditioners is used to prove almost optimal convergence properties of the method. The convergence estimates are independent of the number of subdomains, coefficient jumps between subdomains, and depend only polylogarithmically on the number of elements per subdomain. We formulate and prove an approximate parametric variational principle for Reissner-Mindlin elements as the plate thickness approaches zero, which makes the results applicable to a large class of nonlocking elements in everyday engineering use. The theoretical results are confirmed by computational experiments on model problems as well as examples from real world engineering practice.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:0036-1429
1095-7170
DOI:10.1137/S0036142995291019