A Neumann-Neumann Domain Decomposition Algorithm for Solving Plate and Shell Problems

We present a new Neumann-Neumann-type preconditioner of large scale linear systems arising from plate and shell problems. The advantage of the new method is a smaller coarse space than those of earlier methods of the authors; this improves parallel scalability. A new abstract framework for Neumann-N...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis Jg. 35; H. 2; S. 836 - 867
Hauptverfasser: Le Tallec, Patrick, Mandel, Jan, Vidrascu, Marina
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Philadelphia Society for Industrial and Applied Mathematics 01.04.1998
Schlagworte:
ISSN:0036-1429, 1095-7170
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a new Neumann-Neumann-type preconditioner of large scale linear systems arising from plate and shell problems. The advantage of the new method is a smaller coarse space than those of earlier methods of the authors; this improves parallel scalability. A new abstract framework for Neumann-Neumann preconditioners is used to prove almost optimal convergence properties of the method. The convergence estimates are independent of the number of subdomains, coefficient jumps between subdomains, and depend only polylogarithmically on the number of elements per subdomain. We formulate and prove an approximate parametric variational principle for Reissner-Mindlin elements as the plate thickness approaches zero, which makes the results applicable to a large class of nonlocking elements in everyday engineering use. The theoretical results are confirmed by computational experiments on model problems as well as examples from real world engineering practice.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:0036-1429
1095-7170
DOI:10.1137/S0036142995291019