Stochastic Gradient-Based LMS Algorithm for Reliable and Adaptive 5G Systems
This paper explores the use of the Least Mean Squares (LMS) algorithm, based on stochastic gradient descent, for implementation in adaptive beamforming systems in 5G millimeter-wave (mmWave) multiple-input multiple-output (MIMO) systems. An 8 -element array designed for use at 28 GHz is integrated w...
Uložené v:
| Vydané v: | International Conference on Electronics, Computers and Artificial Intelligence (Online) s. 1 - 10 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
26.06.2025
|
| Predmet: | |
| ISSN: | 2688-0253 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This paper explores the use of the Least Mean Squares (LMS) algorithm, based on stochastic gradient descent, for implementation in adaptive beamforming systems in 5G millimeter-wave (mmWave) multiple-input multiple-output (MIMO) systems. An 8 -element array designed for use at 28 GHz is integrated with the LMS algorithm to give the radiation beam dynamic steering capability in multiple directions during operation. The mathematics of the LMS algorithm is demonstrated before applying this to lead to optimization and full-wave electromagnetic validation of the LMS applied to a patch antenna array prototype built with a RO4003C substrate. Simulated results show its success to achieve solid beam steering capability with increased directivity and sidelobe suppression over four different steering angles of 0^{\circ}, \pm 30^{\circ} , and \pm 60^{\circ} . The results presented in this paper demonstrate the algorithm's potential for near-realtime spatial filtering and spectral efficiency enhancement for massive MIMO implementations and exhibit robust performance, fulfilling the requirements for next generation communication systems in a dynamic and high-performance way. |
|---|---|
| AbstractList | This paper explores the use of the Least Mean Squares (LMS) algorithm, based on stochastic gradient descent, for implementation in adaptive beamforming systems in 5G millimeter-wave (mmWave) multiple-input multiple-output (MIMO) systems. An 8 -element array designed for use at 28 GHz is integrated with the LMS algorithm to give the radiation beam dynamic steering capability in multiple directions during operation. The mathematics of the LMS algorithm is demonstrated before applying this to lead to optimization and full-wave electromagnetic validation of the LMS applied to a patch antenna array prototype built with a RO4003C substrate. Simulated results show its success to achieve solid beam steering capability with increased directivity and sidelobe suppression over four different steering angles of 0^{\circ}, \pm 30^{\circ} , and \pm 60^{\circ} . The results presented in this paper demonstrate the algorithm's potential for near-realtime spatial filtering and spectral efficiency enhancement for massive MIMO implementations and exhibit robust performance, fulfilling the requirements for next generation communication systems in a dynamic and high-performance way. |
| Author | Ghayoula, Ridha Ayed, Leila Ben Mejri, Mohamed Latrach, Lassaad Fattahi, Jaouhar Kouki, Adel |
| Author_xml | – sequence: 1 givenname: Adel surname: Kouki fullname: Kouki, Adel email: adel.kouki@ensi.rnu.tn organization: HANALAB, National School of Computer Science ENSI, University of Manouba,Tunisia – sequence: 2 givenname: Ridha surname: Ghayoula fullname: Ghayoula, Ridha email: ridha.ghayoula@umoncton.ca organization: Moncton University,Faculty of Engineering,New Brunswick,Canada – sequence: 3 givenname: Lassaad surname: Latrach fullname: Latrach, Lassaad email: lassaad.latrach@ensi-uma.tn organization: HANALAB, National School of Computer Science ENSI, University of Manouba,Tunisia – sequence: 4 givenname: Leila Ben surname: Ayed fullname: Ayed, Leila Ben email: leila.benayed@ensi-uma.tn organization: HANALAB, National School of Computer Science ENSI, University of Manouba,Tunisia – sequence: 5 givenname: Jaouhar surname: Fattahi fullname: Fattahi, Jaouhar email: jaouhar.fattahi.1@ulaval.ca organization: Laval University,Department of Computer Science and Software Engineering,Quebec,Canada – sequence: 6 givenname: Mohamed surname: Mejri fullname: Mejri, Mohamed email: mohamed.mejri@ift.ulaval.ca organization: Laval University,Department of Computer Science and Software Engineering,Quebec,Canada |
| BookMark | eNo1j9tKAzEURaMoWGv_QDA_MPUkp7k9jqXWwohg-17SyamNTGfKJAj9ewcvTxsWm81et-yq7Vpi7EHAVAhwj4t5udJqBmIqQaofppR0F2zijLOIQiEqqS_ZSGpri6GDN2yS0icAoDBGSz1i1Tp39cGnHGu-7H2I1ObiyScKvHpd87L56PqYD0e-73r-Tk30u4a4bwMvgz_l-EVcLfn6nDId0x273vsm0eQvx2zzvNjMX4rqbbmal1URHeaCdihrQK2dMEEB2KCGr4rEwIQKxkqcDV7Wgq0JDA5kD0Kr2jiY1bjDMbv_nY1EtD318ej78_bfH78ByM5OXg |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ECAI65401.2025.11095529 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9798331533526 |
| EISSN | 2688-0253 |
| EndPage | 10 |
| ExternalDocumentID | 11095529 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL AAJGR CBEJK IPLJI RIE RIL |
| ID | FETCH-LOGICAL-i93t-eb32c0366917d5008d53155e103615d782346548808ce073d78f0165c7904c3b3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:00:36 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i93t-eb32c0366917d5008d53155e103615d782346548808ce073d78f0165c7904c3b3 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_11095529 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-June-26 |
| PublicationDateYYYYMMDD | 2025-06-26 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-June-26 day: 26 |
| PublicationDecade | 2020 |
| PublicationTitle | International Conference on Electronics, Computers and Artificial Intelligence (Online) |
| PublicationTitleAbbrev | ECAI |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003177626 |
| Score | 1.9129204 |
| Snippet | This paper explores the use of the Least Mean Squares (LMS) algorithm, based on stochastic gradient descent, for implementation in adaptive beamforming systems... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | 5G communications 5G mobile communication Adaptive arrays Adaptive filtering Adaptive systems Antenna radiation patterns Array signal processing Beamforming Filtering Heuristic algorithms LMS algorithm Lowcomplexity algorithms Millimeter wave communication Real-time systems Stochastic gradient descent Stochastic processes Vehicle dynamics |
| Title | Stochastic Gradient-Based LMS Algorithm for Reliable and Adaptive 5G Systems |
| URI | https://ieeexplore.ieee.org/document/11095529 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09b8IwELUK6tAu_aLqtzx0NZAEO_ZIEbSVKEKCgQ05tlOQ2gSlob-_dybQdujQLTolUnTR-d057z0Tcq95muqOlQzw23pJDlOhloxzK1QqI3Ro94dNxKORnM3UuBKrey2Mc86Tz1wTL_2_fJubNW6VtdAdk_NQ1UgtjsVGrLXbUAEghMIWFYcL7mz1e91nAR0JjoEhb26f_nWOioeRwdE_X-CYNL4FeXS8g5oTsueyU3L4w0vwjAwnZW4WGm2X6WPhiVwlewCMsnT4MqHdt9e8WJaLdwpdKkUiMmqmqM4s7Vq9wkWP8kdaGZg3yHTQn_aeWHVUAluqqGQwEYcGsEjA8GU5wLqF0uLcBRALuIUuIELfNKhVaRwUNURS1DGZWLU7Jkqic1LP8sxdECqMUhbgrG0T3omQBJUEOojbCbQC0qXykjQwL_PVxgxjvk3J1R_xa3KA2Ud2VShuSL0s1u6W7JvPcvlR3PlP-AWVrZiX |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4NAEJ5oNVEvvmp8uwevtBRYyh5r01ekTZP20FsDu4ttotAg9fc7s6U-Dh68kQkkZDfDN7N83zcAjxFPkshTgYX4rYwkxxJOFFicK18kgUsO7WbYRHM0CmYzMS7F6kYLo7U25DNdo0vzL19lck1HZXVyx-TcEbuwxz3PsTdyra8jFYRCTG2_ZHHhvfVOuzXwsSahRtDhte3zvyapGCDpHv_zFU6g-i3JY-MvsDmFHZ2ewdEPN8FzCCdFJhcRGS-zXm6oXIX1hCilWDicsNbrS5Yvi8UbwzqVERWZVFMsShVrqWhFnz3Ge6y0MK_CtNuZtvtWOSzBWgq3sLAndiSikY_tl-II7AqTi3PdwFiDK6wDXHJOw2wNpMa0xkhCSibZFLYn3di9gEqapfoSmC-FUAhotoq55xINKm5EjaYdYzEQ6CS4giqty3y1scOYb5fk-o_4Axz0p8NwHg5GzzdwSDtBXCvHv4VKka_1HezLj2L5nt-b7fwEukCb3g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Electronics%2C+Computers+and+Artificial+Intelligence+%28Online%29&rft.atitle=Stochastic+Gradient-Based+LMS+Algorithm+for+Reliable+and+Adaptive+5G+Systems&rft.au=Kouki%2C+Adel&rft.au=Ghayoula%2C+Ridha&rft.au=Latrach%2C+Lassaad&rft.au=Ayed%2C+Leila+Ben&rft.date=2025-06-26&rft.pub=IEEE&rft.eissn=2688-0253&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FECAI65401.2025.11095529&rft.externalDocID=11095529 |