Stochastic Gradient-Based LMS Algorithm for Reliable and Adaptive 5G Systems

This paper explores the use of the Least Mean Squares (LMS) algorithm, based on stochastic gradient descent, for implementation in adaptive beamforming systems in 5G millimeter-wave (mmWave) multiple-input multiple-output (MIMO) systems. An 8 -element array designed for use at 28 GHz is integrated w...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International Conference on Electronics, Computers and Artificial Intelligence (Online) s. 1 - 10
Hlavní autori: Kouki, Adel, Ghayoula, Ridha, Latrach, Lassaad, Ayed, Leila Ben, Fattahi, Jaouhar, Mejri, Mohamed
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 26.06.2025
Predmet:
ISSN:2688-0253
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper explores the use of the Least Mean Squares (LMS) algorithm, based on stochastic gradient descent, for implementation in adaptive beamforming systems in 5G millimeter-wave (mmWave) multiple-input multiple-output (MIMO) systems. An 8 -element array designed for use at 28 GHz is integrated with the LMS algorithm to give the radiation beam dynamic steering capability in multiple directions during operation. The mathematics of the LMS algorithm is demonstrated before applying this to lead to optimization and full-wave electromagnetic validation of the LMS applied to a patch antenna array prototype built with a RO4003C substrate. Simulated results show its success to achieve solid beam steering capability with increased directivity and sidelobe suppression over four different steering angles of 0^{\circ}, \pm 30^{\circ} , and \pm 60^{\circ} . The results presented in this paper demonstrate the algorithm's potential for near-realtime spatial filtering and spectral efficiency enhancement for massive MIMO implementations and exhibit robust performance, fulfilling the requirements for next generation communication systems in a dynamic and high-performance way.
AbstractList This paper explores the use of the Least Mean Squares (LMS) algorithm, based on stochastic gradient descent, for implementation in adaptive beamforming systems in 5G millimeter-wave (mmWave) multiple-input multiple-output (MIMO) systems. An 8 -element array designed for use at 28 GHz is integrated with the LMS algorithm to give the radiation beam dynamic steering capability in multiple directions during operation. The mathematics of the LMS algorithm is demonstrated before applying this to lead to optimization and full-wave electromagnetic validation of the LMS applied to a patch antenna array prototype built with a RO4003C substrate. Simulated results show its success to achieve solid beam steering capability with increased directivity and sidelobe suppression over four different steering angles of 0^{\circ}, \pm 30^{\circ} , and \pm 60^{\circ} . The results presented in this paper demonstrate the algorithm's potential for near-realtime spatial filtering and spectral efficiency enhancement for massive MIMO implementations and exhibit robust performance, fulfilling the requirements for next generation communication systems in a dynamic and high-performance way.
Author Ghayoula, Ridha
Ayed, Leila Ben
Mejri, Mohamed
Latrach, Lassaad
Fattahi, Jaouhar
Kouki, Adel
Author_xml – sequence: 1
  givenname: Adel
  surname: Kouki
  fullname: Kouki, Adel
  email: adel.kouki@ensi.rnu.tn
  organization: HANALAB, National School of Computer Science ENSI, University of Manouba,Tunisia
– sequence: 2
  givenname: Ridha
  surname: Ghayoula
  fullname: Ghayoula, Ridha
  email: ridha.ghayoula@umoncton.ca
  organization: Moncton University,Faculty of Engineering,New Brunswick,Canada
– sequence: 3
  givenname: Lassaad
  surname: Latrach
  fullname: Latrach, Lassaad
  email: lassaad.latrach@ensi-uma.tn
  organization: HANALAB, National School of Computer Science ENSI, University of Manouba,Tunisia
– sequence: 4
  givenname: Leila Ben
  surname: Ayed
  fullname: Ayed, Leila Ben
  email: leila.benayed@ensi-uma.tn
  organization: HANALAB, National School of Computer Science ENSI, University of Manouba,Tunisia
– sequence: 5
  givenname: Jaouhar
  surname: Fattahi
  fullname: Fattahi, Jaouhar
  email: jaouhar.fattahi.1@ulaval.ca
  organization: Laval University,Department of Computer Science and Software Engineering,Quebec,Canada
– sequence: 6
  givenname: Mohamed
  surname: Mejri
  fullname: Mejri, Mohamed
  email: mohamed.mejri@ift.ulaval.ca
  organization: Laval University,Department of Computer Science and Software Engineering,Quebec,Canada
BookMark eNo1j9tKAzEURaMoWGv_QDA_MPUkp7k9jqXWwohg-17SyamNTGfKJAj9ewcvTxsWm81et-yq7Vpi7EHAVAhwj4t5udJqBmIqQaofppR0F2zijLOIQiEqqS_ZSGpri6GDN2yS0icAoDBGSz1i1Tp39cGnHGu-7H2I1ObiyScKvHpd87L56PqYD0e-73r-Tk30u4a4bwMvgz_l-EVcLfn6nDId0x273vsm0eQvx2zzvNjMX4rqbbmal1URHeaCdihrQK2dMEEB2KCGr4rEwIQKxkqcDV7Wgq0JDA5kD0Kr2jiY1bjDMbv_nY1EtD318ej78_bfH78ByM5OXg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ECAI65401.2025.11095529
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798331533526
EISSN 2688-0253
EndPage 10
ExternalDocumentID 11095529
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
AAJGR
CBEJK
IPLJI
RIE
RIL
ID FETCH-LOGICAL-i93t-eb32c0366917d5008d53155e103615d782346548808ce073d78f0165c7904c3b3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:00:36 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-eb32c0366917d5008d53155e103615d782346548808ce073d78f0165c7904c3b3
PageCount 10
ParticipantIDs ieee_primary_11095529
PublicationCentury 2000
PublicationDate 2025-June-26
PublicationDateYYYYMMDD 2025-06-26
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-June-26
  day: 26
PublicationDecade 2020
PublicationTitle International Conference on Electronics, Computers and Artificial Intelligence (Online)
PublicationTitleAbbrev ECAI
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003177626
Score 1.9129204
Snippet This paper explores the use of the Least Mean Squares (LMS) algorithm, based on stochastic gradient descent, for implementation in adaptive beamforming systems...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms 5G communications
5G mobile communication
Adaptive arrays
Adaptive filtering
Adaptive systems
Antenna radiation patterns
Array signal processing
Beamforming
Filtering
Heuristic algorithms
LMS algorithm
Lowcomplexity algorithms
Millimeter wave communication
Real-time systems
Stochastic gradient descent
Stochastic processes
Vehicle dynamics
Title Stochastic Gradient-Based LMS Algorithm for Reliable and Adaptive 5G Systems
URI https://ieeexplore.ieee.org/document/11095529
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09b8IwELUK6tAu_aLqtzx0NZAEO_ZIEbSVKEKCgQ05tlOQ2gSlob-_dybQdujQLTolUnTR-d057z0Tcq95muqOlQzw23pJDlOhloxzK1QqI3Ro94dNxKORnM3UuBKrey2Mc86Tz1wTL_2_fJubNW6VtdAdk_NQ1UgtjsVGrLXbUAEghMIWFYcL7mz1e91nAR0JjoEhb26f_nWOioeRwdE_X-CYNL4FeXS8g5oTsueyU3L4w0vwjAwnZW4WGm2X6WPhiVwlewCMsnT4MqHdt9e8WJaLdwpdKkUiMmqmqM4s7Vq9wkWP8kdaGZg3yHTQn_aeWHVUAluqqGQwEYcGsEjA8GU5wLqF0uLcBRALuIUuIELfNKhVaRwUNURS1DGZWLU7Jkqic1LP8sxdECqMUhbgrG0T3omQBJUEOojbCbQC0qXykjQwL_PVxgxjvk3J1R_xa3KA2Ud2VShuSL0s1u6W7JvPcvlR3PlP-AWVrZiX
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4NAEJ5oNVEvvmp8uwevtBRYyh5r01ekTZP20FsDu4ttotAg9fc7s6U-Dh68kQkkZDfDN7N83zcAjxFPkshTgYX4rYwkxxJOFFicK18kgUsO7WbYRHM0CmYzMS7F6kYLo7U25DNdo0vzL19lck1HZXVyx-TcEbuwxz3PsTdyra8jFYRCTG2_ZHHhvfVOuzXwsSahRtDhte3zvyapGCDpHv_zFU6g-i3JY-MvsDmFHZ2ewdEPN8FzCCdFJhcRGS-zXm6oXIX1hCilWDicsNbrS5Yvi8UbwzqVERWZVFMsShVrqWhFnz3Ge6y0MK_CtNuZtvtWOSzBWgq3sLAndiSikY_tl-II7AqTi3PdwFiDK6wDXHJOw2wNpMa0xkhCSibZFLYn3di9gEqapfoSmC-FUAhotoq55xINKm5EjaYdYzEQ6CS4giqty3y1scOYb5fk-o_4Axz0p8NwHg5GzzdwSDtBXCvHv4VKka_1HezLj2L5nt-b7fwEukCb3g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Electronics%2C+Computers+and+Artificial+Intelligence+%28Online%29&rft.atitle=Stochastic+Gradient-Based+LMS+Algorithm+for+Reliable+and+Adaptive+5G+Systems&rft.au=Kouki%2C+Adel&rft.au=Ghayoula%2C+Ridha&rft.au=Latrach%2C+Lassaad&rft.au=Ayed%2C+Leila+Ben&rft.date=2025-06-26&rft.pub=IEEE&rft.eissn=2688-0253&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FECAI65401.2025.11095529&rft.externalDocID=11095529