Stochastic Gradient-Based LMS Algorithm for Reliable and Adaptive 5G Systems
This paper explores the use of the Least Mean Squares (LMS) algorithm, based on stochastic gradient descent, for implementation in adaptive beamforming systems in 5G millimeter-wave (mmWave) multiple-input multiple-output (MIMO) systems. An 8 -element array designed for use at 28 GHz is integrated w...
Uloženo v:
| Vydáno v: | International Conference on Electronics, Computers and Artificial Intelligence (Online) s. 1 - 10 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
26.06.2025
|
| Témata: | |
| ISSN: | 2688-0253 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper explores the use of the Least Mean Squares (LMS) algorithm, based on stochastic gradient descent, for implementation in adaptive beamforming systems in 5G millimeter-wave (mmWave) multiple-input multiple-output (MIMO) systems. An 8 -element array designed for use at 28 GHz is integrated with the LMS algorithm to give the radiation beam dynamic steering capability in multiple directions during operation. The mathematics of the LMS algorithm is demonstrated before applying this to lead to optimization and full-wave electromagnetic validation of the LMS applied to a patch antenna array prototype built with a RO4003C substrate. Simulated results show its success to achieve solid beam steering capability with increased directivity and sidelobe suppression over four different steering angles of 0^{\circ}, \pm 30^{\circ} , and \pm 60^{\circ} . The results presented in this paper demonstrate the algorithm's potential for near-realtime spatial filtering and spectral efficiency enhancement for massive MIMO implementations and exhibit robust performance, fulfilling the requirements for next generation communication systems in a dynamic and high-performance way. |
|---|---|
| ISSN: | 2688-0253 |
| DOI: | 10.1109/ECAI65401.2025.11095529 |