Obstacle Avoidance Algorithm for Multi-Intelligent Body Formation System Based on Artificial Potential Field Approach

This paper proposes a cooperative strategy integrating distributed mean-shift and the Artificial Potential Field (APF) approach to solve formation shaping with obstacle avoidance in multi-agent systems. Mean-Shift algorithm: Meanshift algorithm: The algorithm drives agents toward target regions by f...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2025 10th International Conference on Intelligent Computing and Signal Processing (ICSP) s. 816 - 819
Hlavní autor: Zhang, Shunyao
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 16.05.2025
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper proposes a cooperative strategy integrating distributed mean-shift and the Artificial Potential Field (APF) approach to solve formation shaping with obstacle avoidance in multi-agent systems. Mean-Shift algorithm: Meanshift algorithm: The algorithm drives agents toward target regions by following local grayscale gradients. A velocity compensation term is introduced to adjust movement direction, while density repulsion within sensing ranges balances agent distribution, thus addressing uneven deployment issues. Artificial Potential Field Approach: Obstacles generate repulsive potential fields. When a robot approaches an obstacle, the APF function computes a repulsive force inversely proportional to their separation distance, steering the robot away to ensure collision-free navigation. Simulation results verify that the proposed method successfully enables multi-agent systems to form complex formations and dynamically perform obstacle avoidance, displacement, and reorganization in cluttered environments.
DOI:10.1109/ICSP65755.2025.11086828