Obstacle Avoidance Algorithm for Multi-Intelligent Body Formation System Based on Artificial Potential Field Approach
This paper proposes a cooperative strategy integrating distributed mean-shift and the Artificial Potential Field (APF) approach to solve formation shaping with obstacle avoidance in multi-agent systems. Mean-Shift algorithm: Meanshift algorithm: The algorithm drives agents toward target regions by f...
Uloženo v:
| Vydáno v: | 2025 10th International Conference on Intelligent Computing and Signal Processing (ICSP) s. 816 - 819 |
|---|---|
| Hlavní autor: | |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
16.05.2025
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper proposes a cooperative strategy integrating distributed mean-shift and the Artificial Potential Field (APF) approach to solve formation shaping with obstacle avoidance in multi-agent systems. Mean-Shift algorithm: Meanshift algorithm: The algorithm drives agents toward target regions by following local grayscale gradients. A velocity compensation term is introduced to adjust movement direction, while density repulsion within sensing ranges balances agent distribution, thus addressing uneven deployment issues. Artificial Potential Field Approach: Obstacles generate repulsive potential fields. When a robot approaches an obstacle, the APF function computes a repulsive force inversely proportional to their separation distance, steering the robot away to ensure collision-free navigation. Simulation results verify that the proposed method successfully enables multi-agent systems to form complex formations and dynamically perform obstacle avoidance, displacement, and reorganization in cluttered environments. |
|---|---|
| DOI: | 10.1109/ICSP65755.2025.11086828 |