ANN-Based Space Vector PWM Modulation for Permanent-Magnet Synchronous Motors
This paper proposes an artificial neural network (ANN)-based space vector PWM (SVPWM) inverter controller for permanent-magnet synchronous motors (PMSM). Traditional SVPWM control methods involve complex computations and exhibit poor robustness to motor parameter variations and load disturbances, ma...
Saved in:
| Published in: | International Conference on Power Electronics and Drive Systems (Online) pp. 1 - 5 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
21.07.2025
|
| Subjects: | |
| ISSN: | 2164-5264 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper proposes an artificial neural network (ANN)-based space vector PWM (SVPWM) inverter controller for permanent-magnet synchronous motors (PMSM). Traditional SVPWM control methods involve complex computations and exhibit poor robustness to motor parameter variations and load disturbances, making them inadequate for high-precision and high-dynamic-response applications. Due to its strong nonlinear mapping capability and adaptability, ANN can optimize SVPWM control strategies, enhancing system real-time performance and robustness. This study employs an ANN trained using the Bayesian regularization backpropagation algorithm and introduces a modular, low-complexity ANN-based SVPWM implementation scheme. Compared to conventional methods, the proposed approach reduces the online computational burden, improves efficiency, and is validated through simulations in the MATLAB/Simulink environment. The results demonstrate that ANN-based SVPWM control maintains high waveform quality across different modulation indices while reducing computational costs by approximately 10 % - 15 %. |
|---|---|
| AbstractList | This paper proposes an artificial neural network (ANN)-based space vector PWM (SVPWM) inverter controller for permanent-magnet synchronous motors (PMSM). Traditional SVPWM control methods involve complex computations and exhibit poor robustness to motor parameter variations and load disturbances, making them inadequate for high-precision and high-dynamic-response applications. Due to its strong nonlinear mapping capability and adaptability, ANN can optimize SVPWM control strategies, enhancing system real-time performance and robustness. This study employs an ANN trained using the Bayesian regularization backpropagation algorithm and introduces a modular, low-complexity ANN-based SVPWM implementation scheme. Compared to conventional methods, the proposed approach reduces the online computational burden, improves efficiency, and is validated through simulations in the MATLAB/Simulink environment. The results demonstrate that ANN-based SVPWM control maintains high waveform quality across different modulation indices while reducing computational costs by approximately 10 % - 15 %. |
| Author | Gong, Jiawei Wang, Weiping Wang, Chao Huang, Kunjie Xia, Yonghong Jia, Shaofeng Huang, Zhen |
| Author_xml | – sequence: 1 givenname: Zhen surname: Huang fullname: Huang, Zhen email: zhenhuang@ncu.edu.cn organization: School of Information Engineering, Nanchang University – sequence: 2 givenname: Jiawei surname: Gong fullname: Gong, Jiawei email: iamgjw@email.ncu.edu.cn organization: School of Information Engineering, Nanchang University – sequence: 3 givenname: Chao surname: Wang fullname: Wang, Chao email: 416100240312@email.ncu.edu.cn organization: School of Information Engineering, Nanchang University – sequence: 4 givenname: Weiping surname: Wang fullname: Wang, Weiping email: jiangte@aliyun.com organization: Jiangxi Jiangte Motor Co., Ltd – sequence: 5 givenname: Shaofeng surname: Jia fullname: Jia, Shaofeng email: shaofengjia@xjtu.edu.cn organization: School of Electrical Engineering, Xi'an Jiaotong University – sequence: 6 givenname: Kunjie surname: Huang fullname: Huang, Kunjie email: huangkj@email.ncu.edu.cnm organization: School of Information Engineering, Nanchang University – sequence: 7 givenname: Yonghong surname: Xia fullname: Xia, Yonghong email: 090548@ncu.edu.cn organization: School of Information Engineering, Nanchang University |
| BookMark | eNo1kMtOwkAYhUejiYh9AxP7AsW5_XNZIuIloUhSoksynf6jNTAlbVnw9tSoq5N8Od9ZnGtyEZuIhNwxOmGM2vvV_LFQwoKZcMphYExKrekZSay2RggGggJl52TEmZIZcCWvSNJ135RSwRnTRo1IPl0uswfXYZUWe-cxfUffN226-sjTvKkOW9fXTUzDD8J25yLGPsvdZ8Q-LY7Rf7VNbA7d0B2s7oZcBrftMPnLMVk_zdezl2zx9vw6my6y2oo-q4TigUsXgNrSKAPCluiY8iWTnlMNEox3qFhVKvQogoRAwehghNEQQIzJ7e9sjYibfVvvXHvc_B8gTr4YUO8 |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/PEDS63958.2025.11144770 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9798331530501 |
| EISSN | 2164-5264 |
| EndPage | 5 |
| ExternalDocumentID | 11144770 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Jiangxi Provincial Natural Science Foundation grantid: 20232BAB204062 funderid: 10.13039/501100004479 – fundername: National Natural Science Foundation of China grantid: 52467004 funderid: 10.13039/501100001809 |
| GroupedDBID | 6IE 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
| ID | FETCH-LOGICAL-i93t-d362f24af509b868539bea16cb14c2075458cae61db6ece3f45f0587f83875f53 |
| IEDL.DBID | RIE |
| IngestDate | Wed Sep 10 07:40:45 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i93t-d362f24af509b868539bea16cb14c2075458cae61db6ece3f45f0587f83875f53 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_11144770 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-July-21 |
| PublicationDateYYYYMMDD | 2025-07-21 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-July-21 day: 21 |
| PublicationDecade | 2020 |
| PublicationTitle | International Conference on Power Electronics and Drive Systems (Online) |
| PublicationTitleAbbrev | PEDS |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003211786 |
| Score | 1.9158492 |
| Snippet | This paper proposes an artificial neural network (ANN)-based space vector PWM (SVPWM) inverter controller for permanent-magnet synchronous motors (PMSM).... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Aerospace electronics Artificial neural networks Backpropagation algorithms Bayes methods Computational efficiency Motors Robustness Space vector pulse width modulation Synchronous motors Vectors |
| Title | ANN-Based Space Vector PWM Modulation for Permanent-Magnet Synchronous Motors |
| URI | https://ieeexplore.ieee.org/document/11144770 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYoCFVxFveWB1m8R2bI88WjGQKFKr0q2KHRt1SVCbIvHvOadpgYGBzTr5pbN8n-98D4TuImaKXAcMpJ_ShMWWEqm5I6zguTGRyWnjTTh5EWkqp1OVtcHqTSyMtbZxPrM932z-8ovKrLyprA_3kjEhQEPfFSJeB2ttDSoUVBkh49aHKwxUPxs8jQCAuffginhvM_pXHZUGRoaH_9zAEep-B-ThbAs1x2jHlifo4EcuwVOU3KcpeQBMKvAI9GCLJ409HmevCU6qoq3ShZ0neWlcwkokyd9KW-PRZ2l8ktxqtYS-vv5OF42Hg_HjM2lrJZC5ojUpAIdcxHIH-K9lDBistM3D2OiQmQieBYxLk9s4LHRsjaWOcRdwKZykoLA4Ts9Qp6xKe44wvJ-U8WkAQ6OZyKXWFOYMmdAqcJHSF6jrGTN7X2fDmG14cvkH_Qrte_Z7e2gUXqNOvVjZG7RnPur5cnHbnOEXX5WcGQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFLZQQQIWriJuPLC6TXwk9sjRqogmqtSqdKtsx0ZdEtSmSPx77DQtMDCwWU--ZMvve-_5HQDcYaozqQLquJ9QiEaGIK6YRTRjUmusJam8Ccf9OE35ZCIGdbB6FQtjjKmcz0zLN6u__KzQS28qa7t3SWkcOw19m1GKg1W41sakQpwyE_Oo9uIKA9EedJ6GDoKZ9-HCrLUe_6uSSgUk3YN_buEQNL9D8uBgAzZHYMvkx2D_RzbBE5Dcpyl6cKiUwaHThA0cVxZ5OHhNYFJkdZ0uaD3J8-PcrYQS-ZabEg4_c-3T5BbLhevrK_A0wajbGT32UF0tAc0EKVHmkMhiKq2TABSPHAoLZWQYaRVSjZ1gQBnX0kRhpiKjDbGU2YDx2HLiVBbLyClo5EVuzgB0EpTQPhFgqBWNJVeKuDlDGisRWCzUOWj6g5m-r_JhTNdncvEH_Rbs9kZJf9p_Tl8uwZ6_Cm8dxeEVaJTzpbkGO_qjnC3mN9V9fgGwWZ9g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Power+Electronics+and+Drive+Systems+%28Online%29&rft.atitle=ANN-Based+Space+Vector+PWM+Modulation+for+Permanent-Magnet+Synchronous+Motors&rft.au=Huang%2C+Zhen&rft.au=Gong%2C+Jiawei&rft.au=Wang%2C+Chao&rft.au=Wang%2C+Weiping&rft.date=2025-07-21&rft.pub=IEEE&rft.eissn=2164-5264&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FPEDS63958.2025.11144770&rft.externalDocID=11144770 |