ANN-Based Space Vector PWM Modulation for Permanent-Magnet Synchronous Motors

This paper proposes an artificial neural network (ANN)-based space vector PWM (SVPWM) inverter controller for permanent-magnet synchronous motors (PMSM). Traditional SVPWM control methods involve complex computations and exhibit poor robustness to motor parameter variations and load disturbances, ma...

Full description

Saved in:
Bibliographic Details
Published in:International Conference on Power Electronics and Drive Systems (Online) pp. 1 - 5
Main Authors: Huang, Zhen, Gong, Jiawei, Wang, Chao, Wang, Weiping, Jia, Shaofeng, Huang, Kunjie, Xia, Yonghong
Format: Conference Proceeding
Language:English
Published: IEEE 21.07.2025
Subjects:
ISSN:2164-5264
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper proposes an artificial neural network (ANN)-based space vector PWM (SVPWM) inverter controller for permanent-magnet synchronous motors (PMSM). Traditional SVPWM control methods involve complex computations and exhibit poor robustness to motor parameter variations and load disturbances, making them inadequate for high-precision and high-dynamic-response applications. Due to its strong nonlinear mapping capability and adaptability, ANN can optimize SVPWM control strategies, enhancing system real-time performance and robustness. This study employs an ANN trained using the Bayesian regularization backpropagation algorithm and introduces a modular, low-complexity ANN-based SVPWM implementation scheme. Compared to conventional methods, the proposed approach reduces the online computational burden, improves efficiency, and is validated through simulations in the MATLAB/Simulink environment. The results demonstrate that ANN-based SVPWM control maintains high waveform quality across different modulation indices while reducing computational costs by approximately 10 % - 15 %.
AbstractList This paper proposes an artificial neural network (ANN)-based space vector PWM (SVPWM) inverter controller for permanent-magnet synchronous motors (PMSM). Traditional SVPWM control methods involve complex computations and exhibit poor robustness to motor parameter variations and load disturbances, making them inadequate for high-precision and high-dynamic-response applications. Due to its strong nonlinear mapping capability and adaptability, ANN can optimize SVPWM control strategies, enhancing system real-time performance and robustness. This study employs an ANN trained using the Bayesian regularization backpropagation algorithm and introduces a modular, low-complexity ANN-based SVPWM implementation scheme. Compared to conventional methods, the proposed approach reduces the online computational burden, improves efficiency, and is validated through simulations in the MATLAB/Simulink environment. The results demonstrate that ANN-based SVPWM control maintains high waveform quality across different modulation indices while reducing computational costs by approximately 10 % - 15 %.
Author Gong, Jiawei
Wang, Weiping
Wang, Chao
Huang, Kunjie
Xia, Yonghong
Jia, Shaofeng
Huang, Zhen
Author_xml – sequence: 1
  givenname: Zhen
  surname: Huang
  fullname: Huang, Zhen
  email: zhenhuang@ncu.edu.cn
  organization: School of Information Engineering, Nanchang University
– sequence: 2
  givenname: Jiawei
  surname: Gong
  fullname: Gong, Jiawei
  email: iamgjw@email.ncu.edu.cn
  organization: School of Information Engineering, Nanchang University
– sequence: 3
  givenname: Chao
  surname: Wang
  fullname: Wang, Chao
  email: 416100240312@email.ncu.edu.cn
  organization: School of Information Engineering, Nanchang University
– sequence: 4
  givenname: Weiping
  surname: Wang
  fullname: Wang, Weiping
  email: jiangte@aliyun.com
  organization: Jiangxi Jiangte Motor Co., Ltd
– sequence: 5
  givenname: Shaofeng
  surname: Jia
  fullname: Jia, Shaofeng
  email: shaofengjia@xjtu.edu.cn
  organization: School of Electrical Engineering, Xi'an Jiaotong University
– sequence: 6
  givenname: Kunjie
  surname: Huang
  fullname: Huang, Kunjie
  email: huangkj@email.ncu.edu.cnm
  organization: School of Information Engineering, Nanchang University
– sequence: 7
  givenname: Yonghong
  surname: Xia
  fullname: Xia, Yonghong
  email: 090548@ncu.edu.cn
  organization: School of Information Engineering, Nanchang University
BookMark eNo1kMtOwkAYhUejiYh9AxP7AsW5_XNZIuIloUhSoksynf6jNTAlbVnw9tSoq5N8Od9ZnGtyEZuIhNwxOmGM2vvV_LFQwoKZcMphYExKrekZSay2RggGggJl52TEmZIZcCWvSNJ135RSwRnTRo1IPl0uswfXYZUWe-cxfUffN226-sjTvKkOW9fXTUzDD8J25yLGPsvdZ8Q-LY7Rf7VNbA7d0B2s7oZcBrftMPnLMVk_zdezl2zx9vw6my6y2oo-q4TigUsXgNrSKAPCluiY8iWTnlMNEox3qFhVKvQogoRAwehghNEQQIzJ7e9sjYibfVvvXHvc_B8gTr4YUO8
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/PEDS63958.2025.11144770
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798331530501
EISSN 2164-5264
EndPage 5
ExternalDocumentID 11144770
Genre orig-research
GrantInformation_xml – fundername: Jiangxi Provincial Natural Science Foundation
  grantid: 20232BAB204062
  funderid: 10.13039/501100004479
– fundername: National Natural Science Foundation of China
  grantid: 52467004
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i93t-d362f24af509b868539bea16cb14c2075458cae61db6ece3f45f0587f83875f53
IEDL.DBID RIE
IngestDate Wed Sep 10 07:40:45 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-d362f24af509b868539bea16cb14c2075458cae61db6ece3f45f0587f83875f53
PageCount 5
ParticipantIDs ieee_primary_11144770
PublicationCentury 2000
PublicationDate 2025-July-21
PublicationDateYYYYMMDD 2025-07-21
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-July-21
  day: 21
PublicationDecade 2020
PublicationTitle International Conference on Power Electronics and Drive Systems (Online)
PublicationTitleAbbrev PEDS
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211786
Score 1.9158492
Snippet This paper proposes an artificial neural network (ANN)-based space vector PWM (SVPWM) inverter controller for permanent-magnet synchronous motors (PMSM)....
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Aerospace electronics
Artificial neural networks
Backpropagation algorithms
Bayes methods
Computational efficiency
Motors
Robustness
Space vector pulse width modulation
Synchronous motors
Vectors
Title ANN-Based Space Vector PWM Modulation for Permanent-Magnet Synchronous Motors
URI https://ieeexplore.ieee.org/document/11144770
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYoCFVxFveWB1m8R2bI88WjGQKFKr0q2KHRt1SVCbIvHvOadpgYGBzTr5pbN8n-98D4TuImaKXAcMpJ_ShMWWEqm5I6zguTGRyWnjTTh5EWkqp1OVtcHqTSyMtbZxPrM932z-8ovKrLyprA_3kjEhQEPfFSJeB2ttDSoUVBkh49aHKwxUPxs8jQCAuffginhvM_pXHZUGRoaH_9zAEep-B-ThbAs1x2jHlifo4EcuwVOU3KcpeQBMKvAI9GCLJ409HmevCU6qoq3ShZ0neWlcwkokyd9KW-PRZ2l8ktxqtYS-vv5OF42Hg_HjM2lrJZC5ojUpAIdcxHIH-K9lDBistM3D2OiQmQieBYxLk9s4LHRsjaWOcRdwKZykoLA4Ts9Qp6xKe44wvJ-U8WkAQ6OZyKXWFOYMmdAqcJHSF6jrGTN7X2fDmG14cvkH_Qrte_Z7e2gUXqNOvVjZG7RnPur5cnHbnOEXX5WcGQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFLZQQQIWriJuPLC6TXwk9sjRqogmqtSqdKtsx0ZdEtSmSPx77DQtMDCwWU--ZMvve-_5HQDcYaozqQLquJ9QiEaGIK6YRTRjUmusJam8Ccf9OE35ZCIGdbB6FQtjjKmcz0zLN6u__KzQS28qa7t3SWkcOw19m1GKg1W41sakQpwyE_Oo9uIKA9EedJ6GDoKZ9-HCrLUe_6uSSgUk3YN_buEQNL9D8uBgAzZHYMvkx2D_RzbBE5Dcpyl6cKiUwaHThA0cVxZ5OHhNYFJkdZ0uaD3J8-PcrYQS-ZabEg4_c-3T5BbLhevrK_A0wajbGT32UF0tAc0EKVHmkMhiKq2TABSPHAoLZWQYaRVSjZ1gQBnX0kRhpiKjDbGU2YDx2HLiVBbLyClo5EVuzgB0EpTQPhFgqBWNJVeKuDlDGisRWCzUOWj6g5m-r_JhTNdncvEH_Rbs9kZJf9p_Tl8uwZ6_Cm8dxeEVaJTzpbkGO_qjnC3mN9V9fgGwWZ9g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Power+Electronics+and+Drive+Systems+%28Online%29&rft.atitle=ANN-Based+Space+Vector+PWM+Modulation+for+Permanent-Magnet+Synchronous+Motors&rft.au=Huang%2C+Zhen&rft.au=Gong%2C+Jiawei&rft.au=Wang%2C+Chao&rft.au=Wang%2C+Weiping&rft.date=2025-07-21&rft.pub=IEEE&rft.eissn=2164-5264&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FPEDS63958.2025.11144770&rft.externalDocID=11144770